Broyden–Fletcher–Goldfarb–Shanno算法
共轭梯度法
行搜索
水准点(测量)
趋同(经济学)
非线性共轭梯度法
方案(数学)
计算机科学
数学优化
下降(航空)
信任域
数学
梯度下降
人工智能
人工神经网络
数学分析
大地测量学
经济增长
地理
计算机网络
半径
经济
异步通信
航空航天工程
工程类
计算机安全
作者
Auwal Bala Abubakar,Poom Kumam,Maulana Malik,Abdulkarim Hassan Ibrahim
标识
DOI:10.1016/j.matcom.2021.05.038
摘要
In this article, we propose a hybrid conjugate gradient (CG) scheme for solving unconstrained optimization problem. The search direction is a combination of the Polak–Ribière–Polyak (PRP) and the Liu–Storey (LS) CG parameters and is close to the direction of the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton scheme. Without the use of the line search, the search direction satisfies the descent condition and possesses the trust region property. The global convergence of the scheme for general functions under the Wolfe-type and Armijo-type line search is established. Numerical experiments are carried out on some benchmark test problems and the results show that the propose scheme is more efficient than other existing schemes. Finally, a practical application of the scheme in motion control of robot manipulator is also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI