In-SituGrowth of Platinum Nanowires on Polydopamine for Enhancing Mechanical and Electrochemical Properties of Flexible Microelectrode Arrays

材料科学 氯铂酸 图层(电子) 纳米线 多电极阵列 电极 微电极 基质(水族馆) 纳米技术 胶粘剂 电化学 铂金 化学 有机化学 物理化学 催化作用 地质学 海洋学
作者
Zhaoling Huang,Qi Zeng,Shuijie Qin,Tianzhun Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (20): 22868-22877 被引量:5
标识
DOI:10.1109/jsen.2021.3109451
摘要

Polydopamine (PDA)-based biomimetic materials have attracted much attention due to the outstanding adhesion and biocompatibility, etc. However, developing a generalized and simple approach for the patternable polymer coatings in a liquid environment and the secondary modification for high-resolution electrodes are challengeable. Herein, A high-performance flexible microelectrode arrays (fMEAs) for biomedical applications based on novel platinum nanowire (PtNW) was proposed using PDA as the bioinspired adhesive buffer layer between the polymer substrate and the nanowire layer. The PDA film was patternable and selectively grafted on the flexible PI substrate using the micro-contact printing ( $\mu $ CP) technique, followed by the reduction of PtNW on patterned PDA in chloroplatinic acid (H 2 PtCl 6 ) by in situ electroless deposition. The as-fabricated PI-PDA/PtNW electrode has greatly reduced the electrochemical impedance at 1 kHz by 99.54% compared with that of PI-Ti/Pt using the conventional sputtering method, and also increased the charge storage capacity (CSCc) by 27 times. At the same time, the adhesion between the metal layer (PDA/PtNW or Ti/Pt) and the PI substrate was evaluated using both intense ultrasonic bath and torsion fatigue test. The results showed that PDA was very effective as the adhesive layer by significantly enhancing both mechanical adhesion and impedance stability when suffering mechanical stress. These achievements are of great interest for robust flexible electronics for implantable or wearable biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
口外彭于晏完成签到,获得积分10
刚刚
英俊的铭应助顺利的振家采纳,获得10
1秒前
在水一方应助超帅的店员采纳,获得10
1秒前
1秒前
2秒前
张zhang发布了新的文献求助10
2秒前
bkagyin应助张凤采纳,获得10
2秒前
爆米花应助单薄的亦瑶采纳,获得10
2秒前
晨天发布了新的文献求助10
3秒前
3秒前
鱼腩发布了新的文献求助10
3秒前
MBEye发布了新的文献求助10
4秒前
我是老大应助HZN采纳,获得10
4秒前
懒虫儿坤发布了新的文献求助10
4秒前
小二郎应助PABBY采纳,获得10
4秒前
xcuwlj完成签到,获得积分10
4秒前
田様应助笑点低怀亦采纳,获得10
5秒前
稳重的仙人掌完成签到,获得积分10
5秒前
忧虑的羊完成签到 ,获得积分10
5秒前
一叶舟完成签到,获得积分10
7秒前
快乐的90后fjk完成签到 ,获得积分10
9秒前
11秒前
11秒前
mingyahaoa完成签到,获得积分10
11秒前
12秒前
鱼腩完成签到,获得积分10
13秒前
传奇3应助Kyle采纳,获得30
15秒前
16秒前
17秒前
站住辣条发布了新的文献求助30
18秒前
18秒前
科技梦完成签到,获得积分10
18秒前
20秒前
SYLH应助伍寒烟采纳,获得10
20秒前
20秒前
22秒前
SciGPT应助爱你不商量采纳,获得10
22秒前
22秒前
隐形曼青应助luen采纳,获得10
24秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833008
求助须知:如何正确求助?哪些是违规求助? 3375402
关于积分的说明 10488891
捐赠科研通 3095006
什么是DOI,文献DOI怎么找? 1704175
邀请新用户注册赠送积分活动 819834
科研通“疑难数据库(出版商)”最低求助积分说明 771661