间歇性
湍流
重整化群
固定点
均匀各向同性湍流
物理
各向同性
统计物理学
齐次空间
泛函重整化群
K-omega湍流模型
Kε湍流模型
数学物理
数学分析
经典力学
数学
量子力学
直接数值模拟
机械
几何学
雷诺数
作者
Léonie Canet,Bertrand Delamotte,Nicolás Wschebor
出处
期刊:Physical review
[American Physical Society]
日期:2016-06-02
卷期号:93 (6): 063101-063101
被引量:62
标识
DOI:10.1103/physreve.93.063101
摘要
We investigate the regime of fully developed homogeneous and isotropic turbulence of the Navier-Stokes (NS) equation in the presence of a stochastic forcing, using the nonperturbative (functional) renormalization group (NPRG). Within a simple approximation based on symmetries, we obtain the fixed-point solution of the NPRG flow equations that corresponds to fully developed turbulence both in d=2 and 3 dimensions. Deviations to the dimensional scalings (Kolmogorov in d=3 or Kraichnan-Batchelor in d=2) are found for the two-point functions. To further analyze these deviations, we derive exact flow equations in the large wave-number limit, and show that the fixed point does not entail the usual scale invariance, thereby identifying the mechanism for the emergence of intermittency within the NPRG framework. The purpose of this work is to provide a detailed basis for NPRG studies of NS turbulence; the determination of the ensuing intermittency exponents is left for future work.
科研通智能强力驱动
Strongly Powered by AbleSci AI