已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pelvic multi‐organ segmentation on cone‐beam CT for prostate adaptive radiotherapy

分割 人工智能 锥束ct 计算机科学 医学 特征(语言学) 锥束ct 基本事实 计算机视觉 放射科 计算机断层摄影术 语言学 哲学
作者
Yabo Fu,Yang Lei,Tonghe Wang,Sibo Tian,Pretesh Patel,Ashesh B. Jani,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:47 (8): 3415-3422 被引量:46
标识
DOI:10.1002/mp.14196
摘要

Background and purpose The purpose of this study is to develop a deep learning‐based approach to simultaneously segment five pelvic organs including prostate, bladder, rectum, left and right femoral heads on cone‐beam CT (CBCT), as required elements for prostate adaptive radiotherapy planning. Materials and methods We propose to utilize both CBCT and CBCT‐based synthetic MRI (sMRI) for the segmentation of soft tissue and bony structures, as they provide complementary information for pelvic organ segmentation. CBCT images have superior bony structure contrast and sMRIs have superior soft tissue contrast. Prior to segmentation, sMRI was generated using a cycle‐consistent adversarial networks (CycleGAN), which was trained using paired CBCT‐MR images. To combine the advantages of both CBCT and sMRI, we developed a cross‐modality attention pyramid network with late feature fusion. Our method processes CBCT and sMRI inputs separately to extract CBCT‐specific and sMRI‐specific features prior to combining them in a late‐fusion network for final segmentation. The network was trained and tested using 100 patients’ datasets, with each dataset including the CBCT and manual physician contours. For comparison, we trained another two networks with different network inputs and architectures. The segmentation results were compared to manual contours for evaluations. Results For the proposed method, dice similarity coefficients and mean surface distances between the segmentation results and the ground truth were 0.96 ± 0.03, 0.65 ± 0.67 mm; 0.91 ± 0.08, 0.93 ± 0.96 mm; 0.93 ± 0.04, 0.72 ± 0.61 mm; 0.95 ± 0.05, 1.05 ± 1.40 mm; and 0.95 ± 0.05, 1.08 ± 1.48 mm for bladder, prostate, rectum, left and right femoral heads, respectively. As compared to the other two competing methods, our method has shown superior performance in terms of the segmentation accuracy. Conclusion We developed a deep learning‐based segmentation method to rapidly and accurately segment five pelvic organs simultaneously from daily CBCTs. The proposed method could be used in the clinic to support rapid target and organs‐at‐risk contouring for prostate adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
秦路发布了新的文献求助10
2秒前
3秒前
3秒前
瓜子柳絮发布了新的文献求助10
5秒前
7秒前
2224270676完成签到,获得积分10
7秒前
呜呼完成签到,获得积分10
8秒前
天天快乐应助读书的时候采纳,获得10
8秒前
瓜子柳絮完成签到,获得积分10
10秒前
英姑应助张逸凡采纳,获得10
11秒前
Eddy完成签到,获得积分10
12秒前
Jasper应助瓜子柳絮采纳,获得10
13秒前
王世卉完成签到,获得积分10
15秒前
书文混四方完成签到 ,获得积分10
15秒前
FashionBoy应助科研达人采纳,获得10
16秒前
17秒前
17秒前
酷酷问夏完成签到 ,获得积分10
19秒前
好好发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
Allan完成签到 ,获得积分10
22秒前
橙子完成签到 ,获得积分10
23秒前
Carol_yl关注了科研通微信公众号
23秒前
zzl发布了新的文献求助10
26秒前
27秒前
张逸凡完成签到,获得积分10
28秒前
28秒前
传奇3应助白泽采纳,获得20
28秒前
英俊的铭应助好好采纳,获得10
28秒前
34秒前
35秒前
张元东完成签到 ,获得积分10
35秒前
39秒前
Ricardo完成签到 ,获得积分10
39秒前
COF发布了新的文献求助10
39秒前
40秒前
上官若男应助13508104971采纳,获得10
40秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085464
求助须知:如何正确求助?哪些是违规求助? 3624479
关于积分的说明 11496674
捐赠科研通 3338626
什么是DOI,文献DOI怎么找? 1835262
邀请新用户注册赠送积分活动 903823
科研通“疑难数据库(出版商)”最低求助积分说明 821971