亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based classification of mesothelioma improves prediction of patient outcome

间皮瘤 数字化病理学 深度学习 队列 卷积神经网络 医学 人工智能 内科学 肿瘤科 计算机科学 病理
作者
Pierre Courtiol,Charles Maussion,Matahi Moarii,Elodie Pronier,Samuel Pilcer,Meriem Sefta,Pierre Manceron,Sylvain Toldo,Mikhail Zaslavskiy,Nolwenn Le Stang,Nicolas Girard,Olivier Elemento,Andrew G. Nicholson,Jean‐Yves Blay,Françoise Galateau-Sallé,Gilles Wainrib,Thomas Clozel
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:25 (10): 1519-1525 被引量:430
标识
DOI:10.1038/s41591-019-0583-3
摘要

Malignant mesothelioma (MM) is an aggressive cancer primarily diagnosed on the basis of histological criteria1. The 2015 World Health Organization classification subdivides mesothelioma tumors into three histological types: epithelioid, biphasic and sarcomatoid MM. MM is a highly complex and heterogeneous disease, rendering its diagnosis and histological typing difficult and leading to suboptimal patient care and decisions regarding treatment modalities2. Here we have developed a new approach-based on deep convolutional neural networks-called MesoNet to accurately predict the overall survival of mesothelioma patients from whole-slide digitized images, without any pathologist-provided locally annotated regions. We validated MesoNet on both an internal validation cohort from the French MESOBANK and an independent cohort from The Cancer Genome Atlas (TCGA). We also demonstrated that the model was more accurate in predicting patient survival than using current pathology practices. Furthermore, unlike classical black-box deep learning methods, MesoNet identified regions contributing to patient outcome prediction. Strikingly, we found that these regions are mainly located in the stroma and are histological features associated with inflammation, cellular diversity and vacuolization. These findings suggest that deep learning models can identify new features predictive of patient survival and potentially lead to new biomarker discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rr完成签到,获得积分10
7秒前
伊笙完成签到 ,获得积分10
7秒前
yl完成签到 ,获得积分10
10秒前
Lik完成签到,获得积分10
13秒前
环走鱼尾纹完成签到 ,获得积分10
14秒前
19秒前
嘟嘟嘟发布了新的文献求助10
25秒前
斯文败类应助Zdu采纳,获得10
27秒前
绘冰完成签到,获得积分10
28秒前
29秒前
32秒前
852应助绘冰采纳,获得10
40秒前
iwaking完成签到,获得积分10
40秒前
微笑天川完成签到,获得积分10
41秒前
pluto应助ch采纳,获得10
46秒前
九日完成签到,获得积分10
46秒前
LeonZhang完成签到 ,获得积分10
49秒前
49秒前
可耐的毛衣完成签到,获得积分10
53秒前
恭喜发财发布了新的文献求助10
53秒前
55秒前
李爱国应助hu970采纳,获得10
57秒前
ch完成签到,获得积分10
57秒前
ch发布了新的文献求助80
1分钟前
LiXingchen完成签到,获得积分10
1分钟前
1分钟前
1分钟前
小小发布了新的文献求助10
1分钟前
hu970完成签到,获得积分10
1分钟前
mortal完成签到,获得积分10
1分钟前
hu970发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
WoeL.Aug.11完成签到 ,获得积分10
1分钟前
1分钟前
回来完成签到,获得积分10
1分钟前
iShine完成签到 ,获得积分10
1分钟前
李洪杰完成签到 ,获得积分10
1分钟前
暮渔木鱼发布了新的文献求助10
1分钟前
noNONOno完成签到,获得积分10
1分钟前
研友_VZG7GZ应助小小采纳,获得10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492072
捐赠科研通 3095700
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792