Deep learning-based classification of mesothelioma improves prediction of patient outcome

间皮瘤 数字化病理学 深度学习 队列 卷积神经网络 医学 人工智能 内科学 肿瘤科 计算机科学 病理
作者
Pierre Courtiol,Charles Maussion,Matahi Moarii,Elodie Pronier,Samuel Pilcer,Meriem Sefta,Pierre Manceron,Sylvain Toldo,Mikhail Zaslavskiy,Nolwenn Le Stang,Nicolas Girard,Olivier Elemento,Andrew G. Nicholson,Jean‐Yves Blay,Françoise Galateau-Sallé,Gilles Wainrib,Thomas Clozel
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:25 (10): 1519-1525 被引量:469
标识
DOI:10.1038/s41591-019-0583-3
摘要

Malignant mesothelioma (MM) is an aggressive cancer primarily diagnosed on the basis of histological criteria1. The 2015 World Health Organization classification subdivides mesothelioma tumors into three histological types: epithelioid, biphasic and sarcomatoid MM. MM is a highly complex and heterogeneous disease, rendering its diagnosis and histological typing difficult and leading to suboptimal patient care and decisions regarding treatment modalities2. Here we have developed a new approach-based on deep convolutional neural networks-called MesoNet to accurately predict the overall survival of mesothelioma patients from whole-slide digitized images, without any pathologist-provided locally annotated regions. We validated MesoNet on both an internal validation cohort from the French MESOBANK and an independent cohort from The Cancer Genome Atlas (TCGA). We also demonstrated that the model was more accurate in predicting patient survival than using current pathology practices. Furthermore, unlike classical black-box deep learning methods, MesoNet identified regions contributing to patient outcome prediction. Strikingly, we found that these regions are mainly located in the stroma and are histological features associated with inflammation, cellular diversity and vacuolization. These findings suggest that deep learning models can identify new features predictive of patient survival and potentially lead to new biomarker discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助自然卷卷卷采纳,获得10
刚刚
1秒前
Hello应助年轻的宛采纳,获得10
2秒前
自渡完成签到 ,获得积分10
2秒前
3秒前
3秒前
lyx11822105发布了新的文献求助10
3秒前
5秒前
花生仔发布了新的文献求助10
5秒前
6秒前
属实有点拉胯给属实有点拉胯的求助进行了留言
6秒前
6秒前
a_hu发布了新的文献求助10
7秒前
yiyi发布了新的文献求助10
7秒前
7秒前
安详沉鱼完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
仁爱的问蕊完成签到,获得积分20
9秒前
123发布了新的文献求助10
11秒前
12秒前
花生仔完成签到,获得积分10
12秒前
年轻的宛完成签到,获得积分10
12秒前
不安青牛举报小赖求助涉嫌违规
13秒前
13秒前
香蕉耳机完成签到 ,获得积分10
15秒前
Light发布了新的文献求助30
16秒前
babalala完成签到,获得积分10
16秒前
年轻的宛发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
20秒前
赘婿应助李姣采纳,获得10
20秒前
xxT发布了新的文献求助10
21秒前
仁爱的问蕊关注了科研通微信公众号
22秒前
23秒前
充电宝应助每天100次采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565745
求助须知:如何正确求助?哪些是违规求助? 3989282
关于积分的说明 12352360
捐赠科研通 3660690
什么是DOI,文献DOI怎么找? 2017320
邀请新用户注册赠送积分活动 1051693
科研通“疑难数据库(出版商)”最低求助积分说明 939350