已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for molecular design - a review of the state of the art

国家(计算机科学) 最先进的
作者
Daniel C. Elton,Zois Boukouvalas,Mark Fuge,Peter W. Chung
出处
期刊:arXiv: Learning 被引量:40
标识
DOI:10.1039/c9me00039a
摘要

In the space of only a few years, deep generative modeling has revolutionized how we think of artificial creativity, yielding autonomous systems which produce original images, music, and text. Inspired by these successes, researchers are now applying deep generative modeling techniques to the generation and optimization of molecules - in our review we found 45 papers on the subject published in the past two years. These works point to a future where such systems will be used to generate lead molecules, greatly reducing resources spent downstream synthesizing and characterizing bad leads in the lab. In this review we survey the increasingly complex landscape of models and representation schemes that have been proposed. The four classes of techniques we describe are recursive neural networks, autoencoders, generative adversarial networks, and reinforcement learning. After first discussing some of the mathematical fundamentals of each technique, we draw high level connections and comparisons with other techniques and expose the pros and cons of each. Several important high level themes emerge as a result of this work, including the shift away from the SMILES string representation of molecules towards more sophisticated representations such as graph grammars and 3D representations, the importance of reward function design, the need for better standards for benchmarking and testing, and the benefits of adversarial training and reinforcement learning over maximum likelihood based training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
希望天下0贩的0应助shuqin采纳,获得10
3秒前
qwq完成签到,获得积分10
3秒前
维生素CCC完成签到 ,获得积分10
3秒前
3秒前
BowieHuang应助qianqina采纳,获得10
4秒前
鳄鱼叁叁完成签到 ,获得积分10
4秒前
6秒前
li发布了新的文献求助10
9秒前
codwest发布了新的文献求助10
9秒前
浮游应助小胖子采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
14秒前
轨迹完成签到,获得积分10
15秒前
我是老大应助wish采纳,获得30
16秒前
Num发布了新的文献求助10
17秒前
楠小秾发布了新的文献求助10
17秒前
三点水发布了新的文献求助10
18秒前
orixero应助崔嘉坤采纳,获得10
19秒前
yueyue发布了新的文献求助10
20秒前
21秒前
回星予你发布了新的文献求助10
21秒前
21秒前
22秒前
zl完成签到,获得积分10
23秒前
li完成签到,获得积分10
24秒前
彭于晏应助Num采纳,获得10
24秒前
Dsivan发布了新的文献求助10
25秒前
蓝胖砸完成签到,获得积分10
25秒前
小卡发布了新的文献求助10
25秒前
楠小秾完成签到,获得积分10
27秒前
wish发布了新的文献求助30
28秒前
29秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542651
求助须知:如何正确求助?哪些是违规求助? 4628923
关于积分的说明 14610198
捐赠科研通 4570087
什么是DOI,文献DOI怎么找? 2505561
邀请新用户注册赠送积分活动 1482902
关于科研通互助平台的介绍 1454273