拟合优度
卡方检验
数学
统计的
统计
检验统计量
F试验
平方(代数)
缩放比例
皮尔森卡方检定
统计假设检验
应用数学
几何学
作者
Albert Satorra,Peter M. Bentler
出处
期刊:Psychometrika
[Springer Science+Business Media]
日期:2001-12-01
卷期号:66 (4): 507-514
被引量:4456
摘要
A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model sayM 0 implies on a less restricted oneM 1. IfT 0 andT 1 denote the goodness-of-fit test statistics associated toM 0 andM 1, respectively, then typically the differenceT d =T 0−T 1 is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the modelsM 0 andM 1. As in the case of the goodness-of-fit test, it is of interest to scale the statisticT d in order to improve its chi-square approximation in realistic, that is, nonasymptotic and nonormal, applications. In a recent paper, Satorra (2000) shows that the difference between two SB scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are not available in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of modelsM 0 andM 1. A Monte Carlo study is provided to illustrate the performance of the competing statistics.
科研通智能强力驱动
Strongly Powered by AbleSci AI