Wavelet Kernel based Convolutional Neural Network for Localization of Partial Discharge Sources within a Power Apparatus

卷积神经网络 局部放电 核(代数) 计算机科学 小波 边距(机器学习) 特征提取 人工智能 小波变换 模式识别(心理学) 特征(语言学) 电压 电子工程 工程类 机器学习 数学 电气工程 哲学 组合数学 语言学
作者
Biswarup Ganguly,Sayanti Chaudhury,Subrata Biswas,Debangshu Dey,Sugata Munshi,Biswendu Chatterjee,Sovan Dalai,S. Chakravorti
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:73
标识
DOI:10.1109/tii.2020.2991686
摘要

This article presents a new convolutional neural network (CNN) topology using wavelet kernels to detect and discriminate single or multiple partial discharge (PD) locations in high voltage power apparatus with increased accuracy. The method is tested on an electrical equipment model with acoustic PD sensors. A cubical tank has been emulated in the laboratory representing the equipment under test and partial discharge sources have been placed at different positions along with the required data acquisition hardware. The present scheme eliminates the requirement of separate algorithms for feature extraction and classification of the acquired PD signals. Wavelet kernels of the CNN play a crucial role in feature learning, and the proposed CNN architecture as a whole, can classify the features in a supervised manner. The performance of the proposed scheme is compared with other existing methods using the same data set. It is found that an overall accuracy of 97.64% is achieved by the proposed method, outperforming other existing methods by a significant margin of at least 5% in terms of accuracy. The developed module is a generic one and can be adapted for different high voltage electrical apparatus with similar topological structures; hence, it can be used in various ways in power industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾完成签到,获得积分10
1秒前
1秒前
zheng完成签到 ,获得积分10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
滕滕应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
Balance Man完成签到 ,获得积分10
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
芝士发布了新的文献求助20
2秒前
sevenhill应助科研通管家采纳,获得10
2秒前
BareBear应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得20
2秒前
田様应助科研通管家采纳,获得10
2秒前
正己化人应助科研通管家采纳,获得10
2秒前
sevenhill应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
且慢应助科研通管家采纳,获得10
2秒前
sevenhill应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
正己化人应助科研通管家采纳,获得10
2秒前
2秒前
天流完成签到,获得积分10
2秒前
依古比古完成签到 ,获得积分10
4秒前
宏哥完成签到,获得积分10
4秒前
坤坤完成签到,获得积分10
4秒前
世界和平完成签到 ,获得积分10
5秒前
yifei完成签到,获得积分10
5秒前
刘铠瑜发布了新的文献求助10
5秒前
淼淼完成签到 ,获得积分10
5秒前
李茉发布了新的文献求助10
6秒前
6秒前
中国大陆完成签到,获得积分10
7秒前
俭朴的芝麻完成签到,获得积分10
7秒前
公西翠萱完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482740
求助须知:如何正确求助?哪些是违规求助? 4583466
关于积分的说明 14389895
捐赠科研通 4512796
什么是DOI,文献DOI怎么找? 2473214
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861