化学
血液循环
医学
循环(流体动力学)
机械
物理
传统医学
作者
Maxim P. Nikitin,Ivan V. Zelepukin,Victoria O. Shipunova,Ilya L. Sokolov,Sergey M. Deyev,Petr I. Nikitin
标识
DOI:10.1038/s41551-020-0581-2
摘要
The rapid elimination of nanoparticles from the bloodstream by the mononuclear phagocyte system limits the activity of many nanoparticle formulations. Here, we show that inducing a slight and transient depletion of erythrocytes in mice (~5% decrease in haematocrit) by administrating a low dose (1.25 mg kg−1) of allogeneic anti-erythrocyte antibodies increases the circulation half-life of a range of short-circulating and long-circulating nanoparticle formulations by up to 32-fold. Treatment of the animals with anti-erythrocyte antibodies significantly improved the targeting of CD4+ cells in vivo with fluorescent anti-CD4-antibody-conjugated nanoparticles, the magnetically guided delivery of ferrofluid nanoparticles to subcutaneous tumour allografts and xenografts, and the treatment of subcutaneous tumour allografts with magnetically guided liposomes loaded with doxorubicin and magnetite or with clinically approved ‘stealthy’ doxorubicin liposomes. The transient and partial blocking of the mononuclear phagocyte system may enhance the performance of a wide variety of nanoparticle drugs. Inducing a slight and transient depletion of erythrocytes in mice via the administration of a low dose of allogeneic anti-erythrocyte antibodies increases the circulation half-life of nanoparticle formulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI