亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images

无线电技术 多参数磁共振成像 胶质瘤 医学 放射科 核医学 内科学 癌症 癌症研究 前列腺癌
作者
Jianhong Cheng,Jin Liu,Hailin Yue,Harrison X. Bai,Yi Pan,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1084-1095 被引量:42
标识
DOI:10.1109/tcbb.2020.3033538
摘要

The accurate prediction of glioma grade before surgery is essential for treatment planning and prognosis. Since the gold standard (i.e., biopsy)for grading gliomas is both highly invasive and expensive, and there is a need for a noninvasive and accurate method. In this study, we proposed a novel radiomics-based pipeline by incorporating the intratumoral and peritumoral features extracted from preoperative mpMRI scans to accurately and noninvasively predict glioma grade. To address the unclear peritumoral boundary, we designed an algorithm to capture the peritumoral region with a specified radius. The mpMRI scans of 285 patients derived from a multi-institutional study were adopted. A total of 2153 radiomic features were calculated separately from intratumoral volumes (ITVs)and peritumoral volumes (PTVs)on mpMRI scans, and then refined using LASSO and mRMR feature ranking methods. The top-ranking radiomic features were entered into the classifiers to build radiomic signatures for predicting glioma grade. The prediction performance was evaluated with five-fold cross-validation on a patient-level split. The radiomic signatures utilizing the features of ITV and PTV both show a high accuracy in predicting glioma grade, with AUCs reaching 0.968. By incorporating the features of ITV and PTV, the AUC of IPTV radiomic signature can be increased to 0.975, which outperforms the state-of-the-art methods. Additionally, our proposed method was further demonstrated to have strong generalization performance in an external validation dataset with 65 patients. The source code of our implementation is made publicly available at https://github.com/chengjianhong/glioma_grading.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YP_024发布了新的文献求助10
3秒前
3秒前
7秒前
9秒前
隐形曼青应助YP_024采纳,获得10
11秒前
WEN发布了新的文献求助10
14秒前
15秒前
李爱国应助科研通管家采纳,获得10
17秒前
WEN完成签到,获得积分10
24秒前
YP_024完成签到,获得积分10
26秒前
27秒前
27秒前
天边道士发布了新的文献求助10
32秒前
容布丁发布了新的文献求助10
48秒前
共享精神应助橙子采纳,获得10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
3分钟前
香蕉觅云应助妩媚的幼丝采纳,获得10
3分钟前
我要读博士完成签到 ,获得积分10
3分钟前
小松鼠完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
妩媚的幼丝完成签到,获得积分20
3分钟前
Babyj发布了新的文献求助10
3分钟前
SWEETYXY应助妩媚的幼丝采纳,获得10
3分钟前
Hello应助Claudia采纳,获得10
3分钟前
4分钟前
4分钟前
happyxuexi发布了新的文献求助10
4分钟前
Babyj完成签到,获得积分10
4分钟前
lovexz完成签到,获得积分10
4分钟前
上官若男应助Claudia采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得30
4分钟前
4分钟前
4分钟前
科研通AI5应助102采纳,获得10
4分钟前
Krim完成签到 ,获得积分10
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810348
科研通“疑难数据库(出版商)”最低求助积分说明 766033