Predicting adverse outcomes of hypertensive disorders in pregnancy: validation of fullPIERS model in Chinese population

医学 接收机工作特性 内科学 不利影响 人口 肌酐 产科 环境卫生
作者
H.H. Wang,Lan Zhu,J.J. Zhang,Bei Han,Y. Wang
出处
期刊:Clinical and Experimental Obstetrics & Gynecology [IMR Press]
卷期号:46 (5): 743-747 被引量:4
标识
DOI:10.12891/ceog4737.2019
摘要

Purpose of Investigation: The fullPIERS model is an effective tool to predict the adverse outcomes of pre-eclampsia. This study aimed to validate the effectiveness of fullPIERS model, and discover the variables that may be useful to predict the adverse outcomes of hypertensive disorders in pregnancy (HDPs) in Chinese population. Materials and Methods: The authors retrospectively collected the data of 1,430 HDPs patients within 48 hours of adverse outcomes in two tertiary hospitals in China. Calculated the risk probability value of every patient using fullPIERS model and validated the predictive efficiency by area under curve of operating characteristic curve (AUC ROC). To assess the factors particularly useful to predict adverse outcomes of HDPs for Chinese population, the authors conducted the independent sample t-test and multivariate regression analysis to the following factors: age, platelet count, gestational age, creatinine, AST, total bilirubin, direct bilirubin, indirect bilirubin, hemoglobin, albumin, globulin, ALT, alkaline phosphatase, lactic dehydrogenase, urea, and uric acid. Results: The AUC ROC was 0.768 calculated by fullPIERS model within 48 hours of adverse outcomes, and the cut-off probability value was 0.045. In patients with a probability value ≥ 0.045, 53.53% experienced adverse outcomes, and the false positive rate was 10.70%. Lactic dehydrogenase was a promising variable for predicting the risk of adverse outcome of HDPs. The AUC ROC calculated based on lactic dehydrogenase alone was 0.615 with a cut-off value of 243.5 U/L. Conclusions: The fullPIERS model was effective for Chinese population to predict adverse outcomes in pregnant women complicating HDPs. Lactic dehydrogenase was a promising variable to predict the adverse outcomes of HDPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
科目三应助MingJia采纳,获得10
6秒前
小二郎应助小羊采纳,获得10
7秒前
王小西发布了新的文献求助10
8秒前
shasha完成签到 ,获得积分10
8秒前
HaojunWang完成签到 ,获得积分10
8秒前
思源应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
开心安莲应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
大气摩托完成签到,获得积分10
10秒前
中大奖的英姑完成签到,获得积分10
10秒前
许甜甜鸭应助Gavin采纳,获得30
11秒前
12秒前
体贴的若风完成签到,获得积分20
12秒前
15秒前
大气摩托发布了新的文献求助10
16秒前
SXYYXS完成签到,获得积分10
17秒前
田様应助过时的不评采纳,获得10
18秒前
NN应助体贴的若风采纳,获得10
18秒前
小蘑菇应助holo采纳,获得10
18秒前
科目三应助孙佳慧采纳,获得10
19秒前
李爱国应助log采纳,获得10
19秒前
SXYYXS发布了新的文献求助10
21秒前
爱微笑的树懒完成签到,获得积分20
23秒前
23秒前
李健应助yihua采纳,获得10
24秒前
26秒前
27秒前
27秒前
chen完成签到,获得积分20
28秒前
CC完成签到,获得积分10
29秒前
mowanglord发布了新的文献求助30
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123