Topology optimization of the volume-to-point heat conduction problem at micro- and nano-scale

热传导 玻尔兹曼方程 拓扑优化 声子 弹道传导 拓扑(电路) 物理 材料科学 数学分析 数学 凝聚态物理 有限元法 热力学 量子力学 组合数学 电子
作者
Han-Ling Li,Bing Cao
出处
期刊:Chinese Physics [Science Press]
卷期号:68 (20): 200201-200201 被引量:8
标识
DOI:10.7498/aps.68.20190923
摘要

The volume-to-point (VP) heat conduction problem is one of the fundamental problems of cooling for electronic devices. The existed reports about the VP problem are mainly based on the Fourier’s law which works well at the macroscopic scale. However, the length scale of modern electronic devices has reduced to micro- and nano-scale, at which optimization methods that are capable of dealing with the non-Fourier heat conduction are desired now. In this paper, phonon Boltzmann transport equation (BTE) and solid isotropic material with penalization (SIMP) method are coupled to develop a topology optimization method for ballistic-diffusive heat conduction. Phonon BTE is transformed into equation of phonon radiative transport, which is solved by the discrete ordinate method. To realize the topology optimization, SIMP method is adopted to penalize the phonon extinction coefficient, which equals to the reciprocal of phonon mean-free-path, and an explicit constraint on the global gradient of the nominal material density is used to ensure the solutions being well-posed and mesh-independent. By using the developed topology optimization method, it is found that the optimal material distributions for the VP problem in ballistic-diffusive heat conduction significantly deviate from the traditional tree-like structure obtained in diffusive heat conduction, and the results vary with the Knudsen number (<i>Kn</i>). This is related to the different coefficient interpolation ways in the SIMP method and phonon ballistic transport. When <i>Kn</i> → 0, instead of converging to the conventional tree-like structure which fully stretches into the interior zone, the new method gradually produces the result obtained by the topology optimization which interpolates the reciprocal of the thermal conductivity in diffusive heat conduction. As <i>Kn</i> increases, the high thermal-conductive filling materials show a trend to gather around the low-temperature boundary, and there are more thick and strong trunk structures, less tiny and thin branch structures in the optimized material distributions. In addition, the ratio of the optimized average temperature to the value of the uniform material distribution <inline-formula><tex-math id="M1">\begin{document}$\left( {T_{{\rm{ave}},{\rm{opt}}}^{\rm{*}}/T_{{\rm{ave}},{\rm{uni}}}^{\rm{*}}} \right)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20190923_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20190923_M1.png"/></alternatives></inline-formula> also increases. The dependence of the topology optimization results on <i>Kn</i> can be attributed to the size effect of the thermal conductivity caused by phonon ballistic transport. In the diffusive heat conduction, filling materials with different length scales have the same efficiency to build high thermal-conductive channels. However, with ballistic effect enhancing, size effect makes the effective thermal conductivities of the branch structure lower than those of the trunk structure, as the former is smaller than the latter. As a result, the branch structures are less efficient compared with the trunk structures in terms of building high thermal-conductive channels, and the optimal material distributions have more trunk structures and fewer branch structures. When the ballistic effect becomes significant enough, say at <i>Kn</i> = 0.1, the topology optimization gets a dough-like material distribution in which branches merge into trunks. The proposed topology optimization method have the potential to provide guidance in designing nanoscale electronic devices for improving the heat dissipation capability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lierikafei完成签到,获得积分10
1秒前
吴陈发布了新的文献求助10
1秒前
CCC发布了新的文献求助10
2秒前
xyg发布了新的文献求助10
3秒前
3秒前
执着又蓝发布了新的文献求助10
3秒前
深情安青应助zhourongchun采纳,获得10
3秒前
lrcty98完成签到 ,获得积分10
4秒前
4秒前
5秒前
氯吡格雷完成签到 ,获得积分10
6秒前
maclogos发布了新的文献求助10
6秒前
7秒前
Lucas应助郑迎浪采纳,获得10
7秒前
7秒前
小凡凡发布了新的文献求助10
7秒前
8秒前
席以亦发布了新的文献求助30
8秒前
这丁发布了新的文献求助20
9秒前
RAW完成签到 ,获得积分10
9秒前
lcpppppp发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
蒋蒋发布了新的文献求助10
13秒前
断数循环发布了新的文献求助10
14秒前
CipherSage应助鳗鱼鸽子采纳,获得10
14秒前
15秒前
zoey发布了新的文献求助10
16秒前
16秒前
大气愚志完成签到 ,获得积分10
17秒前
动听的涵山完成签到,获得积分10
17秒前
wph完成签到,获得积分10
17秒前
梁超发布了新的文献求助10
17秒前
LLLL完成签到,获得积分10
20秒前
21秒前
beibeimao发布了新的文献求助10
21秒前
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108343
求助须知:如何正确求助?哪些是违规求助? 3646445
关于积分的说明 11550471
捐赠科研通 3352436
什么是DOI,文献DOI怎么找? 1842066
邀请新用户注册赠送积分活动 908390
科研通“疑难数据库(出版商)”最低求助积分说明 825491