Application of Convolutional Neural Network-Based Feature Extraction and Data Fusion for Geographical Origin Identification of Radix Astragali by Visible/Short-Wave Near-Infrared and Near Infrared Hyperspectral Imaging

高光谱成像 模式识别(心理学) 卷积神经网络 主成分分析 根(腹足类) 人工智能 支持向量机 特征提取 计算机科学 特征(语言学) 融合 生物 语言学 植物 哲学
作者
Qinlin Xiao,Xiulin Bai,Pan Gao,Yong He
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:20 (17): 4940-4940 被引量:34
标识
DOI:10.3390/s20174940
摘要

Radix Astragali is a prized traditional Chinese functional food that is used for both medicine and food purposes, with various benefits such as immunomodulation, anti-tumor, and anti-oxidation. The geographical origin of Radix Astragali has a significant impact on its quality attributes. Determining the geographical origins of Radix Astragali is essential for quality evaluation. Hyperspectral imaging covering the visible/short-wave near-infrared range (Vis-NIR, 380-1030 nm) and near-infrared range (NIR, 874-1734 nm) were applied to identify Radix Astragali from five different geographical origins. Principal component analysis (PCA) was utilized to form score images to achieve preliminary qualitative identification. PCA and convolutional neural network (CNN) were used for feature extraction. Measurement-level fusion and feature-level fusion were performed on the original spectra at different spectral ranges and the corresponding features. Support vector machine (SVM), logistic regression (LR), and CNN models based on full wavelengths, extracted features, and fusion datasets were established with excellent results; all the models obtained an accuracy of over 98% for different datasets. The results illustrate that hyperspectral imaging combined with CNN and fusion strategy could be an effective method for origin identification of Radix Astragali.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助柠檬01210采纳,获得10
1秒前
1秒前
独自面对完成签到,获得积分10
3秒前
田様应助柠檬01210采纳,获得10
3秒前
fyt398398发布了新的文献求助10
4秒前
路人完成签到,获得积分0
4秒前
又又完成签到 ,获得积分10
5秒前
5秒前
qwepirt完成签到,获得积分10
5秒前
顾勇完成签到,获得积分0
5秒前
科研通AI5应助zhanlang采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
冷静剑成完成签到,获得积分10
6秒前
wudizhuzhu233完成签到,获得积分10
7秒前
liangmh完成签到,获得积分10
7秒前
yaoyh_gc完成签到,获得积分10
7秒前
浪浪山完成签到,获得积分10
7秒前
聪慧咖啡豆完成签到,获得积分10
8秒前
快乐的故事完成签到,获得积分10
8秒前
ri_290完成签到,获得积分10
8秒前
鳗鱼友琴发布了新的文献求助10
9秒前
佳loong完成签到,获得积分10
9秒前
悟空完成签到,获得积分10
9秒前
wdnyrrc发布了新的文献求助10
10秒前
10秒前
10秒前
大眼睛土豆完成签到,获得积分10
10秒前
Ivy完成签到,获得积分10
12秒前
万能图书馆应助Zhangfu采纳,获得10
12秒前
粗心的胜完成签到,获得积分10
13秒前
Once完成签到,获得积分10
13秒前
13秒前
南斋帝完成签到 ,获得积分10
13秒前
麦兜做科研完成签到 ,获得积分10
16秒前
和谐白云完成签到,获得积分10
16秒前
qyhl完成签到,获得积分10
16秒前
FelixChen完成签到,获得积分10
16秒前
AmyHu完成签到,获得积分10
16秒前
青青子衿完成签到,获得积分10
17秒前
小商完成签到,获得积分10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263