Predicting carbon and water vapor fluxes using machine learning and novel feature ranking algorithms

机器学习 算法 人工智能 支持向量机 特征选择 涡度相关法 随机森林 计算机科学 生态系统 生态学 生物
作者
Xia Cui,Thomas Goff,Song Cui,Dorothy Menefee,Qiang Wu,Nithya Rajan,Shyam Nair,Nate Phillips,Forbes Walker
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:775: 145130-145130 被引量:27
标识
DOI:10.1016/j.scitotenv.2021.145130
摘要

Abstract Gap-filling eddy covariance flux data using quantitative approaches has increased over the past decade. Numerous methods have been proposed previously, including look-up table approaches, parametric methods, process-based models, and machine learning. Particularly, the REddyProc package from the Max Planck Institute for Biogeochemistry and ONEFlux package from AmeriFlux have been widely used in many studies. However, there is no consensus regarding the optimal model and feature selection method that could be used for predicting different flux targets (Net Ecosystem Exchange, NEE; or Evapotranspiration –ET), due to the limited systematic comparative research based on the identical site-data. Here, we compared NEE and ET gap-filling/prediction performance of the least-square-based linear model, artificial neural network, random forest (RF), and support vector machine (SVM) using data obtained from four major row-crop and forage agroecosystems located in the subtropical or the climate-transition zones in the US. Additionally, we tested the impacts of different training-testing data partitioning settings, including a 10-fold time-series sequential (10FTS), a 10-fold cross validation (CV) routine with single data point (10FCV), daily (10FCVD), weekly (10FCVW) and monthly (10FCVM) gap length, and a 7/14-day flanking window (FW) approach; and implemented a novel Sliced Inverse Regression-based Recursive Feature Elimination algorithm (SIRRFE). We benchmarked the model performance against REddyProc and ONEFlux-produced results. Our results indicated that accurate NEE and ET prediction models could be systematically constructed using SVM/RF and only a few top informative features. The gap-filling performance of ONEFlux is generally satisfactory (R2 = 0.39–0.71), but results from REddyProc could be very limited or even unreliable in many cases (R2 = 0.01–0.67). Overall, SIRRFE-refined SVM models yielded excellent results for predicting NEE (R2 = 0.46–0.92) and ET (R2 = 0.74–0.91). Finally, the performance of various models was greatly affected by the types of ecosystem, predicting targets, and training algorithms; but was insensitive towards training-testing partitioning. Our research provided more insights into constructing novel gap-filling models and understanding the underlying drivers affecting boundary layer carbon/water fluxes on an ecosystem level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助CYY采纳,获得10
刚刚
久伴久爱完成签到 ,获得积分10
4秒前
在水一方应助安详的惜梦采纳,获得10
7秒前
8秒前
搜集达人应助小付采纳,获得10
8秒前
jason完成签到,获得积分10
10秒前
奥雷里亚诺完成签到 ,获得积分10
10秒前
追寻的安南完成签到 ,获得积分10
11秒前
科研通AI5应助复杂念梦采纳,获得10
12秒前
Jasper应助云瑾采纳,获得10
13秒前
luochen完成签到,获得积分10
13秒前
15秒前
惠飞薇发布了新的文献求助10
15秒前
Danan完成签到 ,获得积分10
15秒前
阿波罗完成签到 ,获得积分10
17秒前
和谐的曼云完成签到,获得积分10
19秒前
隐形曼青应助吗喽采纳,获得10
19秒前
20秒前
目眩完成签到,获得积分10
21秒前
冯婷完成签到 ,获得积分10
22秒前
逸龙完成签到,获得积分10
22秒前
细心健柏完成签到 ,获得积分10
24秒前
JamesPei应助zhoull采纳,获得10
26秒前
26秒前
iNk应助whtestar采纳,获得10
28秒前
今天你读文献了吗完成签到,获得积分10
28秒前
科研通AI2S应助fryeia采纳,获得10
30秒前
32秒前
传奇3应助姜太公采纳,获得10
33秒前
MosenL应助小综的fan儿采纳,获得10
34秒前
zhoull完成签到,获得积分10
35秒前
bc应助Luxuehua采纳,获得30
36秒前
zhoull发布了新的文献求助10
37秒前
shooin完成签到,获得积分10
37秒前
38秒前
科研通AI5应助复杂念梦采纳,获得10
41秒前
大方元风发布了新的文献求助10
43秒前
科研通AI5应助zhoull采纳,获得10
47秒前
科研通AI2S应助dddd采纳,获得10
47秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522