单一制国家
序列(生物学)
算法
数学
拓扑(电路)
基质(化学分析)
方案(数学)
酉矩阵
相(物质)
计算机科学
要素(刑法)
域代数上的
离散数学
激光器
量子位元
矩阵代数
固定点
作者
Yasir, P. A. Ameen,van Loock, Peter
出处
期刊:Cornell University - arXiv
日期:2025-05-16
标识
DOI:10.48550/arxiv.2505.11371
摘要
We show that any $N$-dimensional unitary matrix can be realized using a finite sequence of concatenated identical fixed multiport beamsplitters (MBSs) and phase shifters (PSs). Our construction is based on a Lie group theorem applied to existing decompositions. Using the Bell-Walmsley-Clements framework, we prove that any $N$-dimensional unitary requires $N+2$ phase masks, $N-1$ fixed MBSs, and $N-1$ BSs. Our scheme requires only $\mathcal{O}(N)$ fixed, identical components (MBSs and BSs) compared to the $\mathcal{O}(N^2)$ fixed BSs required by conventional schemes (e.g., Clements), all while keeping the same number of PSs. Experimentally, these MBS can be realized as a monolithic element via femtosecond laser writing, offering superior performance through reduced insertion losses. As an application, we present a reconfigurable linear optical circuit that implements a three-dimensional unitary emerging in the unambiguous discrimination of two nonorthogonal qubit states.
科研通智能强力驱动
Strongly Powered by AbleSci AI