局部敏感散列
最近邻搜索
汉明空间
与K无关的哈希
k-最近邻算法
散列函数
二进制代码
通用哈希
汉明距离
计算机科学
动态完美哈希
特征哈希
模式识别(心理学)
熵(时间箭头)
二进制数
算法
数学
人工智能
哈希表
汉明码
完美哈希函数
双重哈希
解码方法
区块代码
物理
计算机安全
算术
量子力学
作者
Xiangyu He,Peisong Wang,Jian Cheng
标识
DOI:10.1109/cvpr.2019.00295
摘要
Hashing based approximate nearest neighbor search embeds high dimensional data to compact binary codes, which enables efficient similarity search and storage. However, the non-isometry sign(·) function makes it hard to project the nearest neighbors in continuous data space into the closest codewords in discrete Hamming space. In this work, we revisit the sign(·) function from the perspective of space partitioning. In specific, we bridge the gap between k-nearest neighbors and binary hashing codes with Shannon entropy. We further propose a novel K-Nearest Neighbors Hashing (KNNH) method to learn binary representations from KNN within the subspaces generated by sign(·). Theoretical and experimental results show that the KNN relation is of central importance to neighbor preserving embeddings, and the proposed method outperforms the state-of-the-arts on benchmark datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI