RNA序列
RNA剪接
计算生物学
核糖核酸
选择性拼接
生物
深度学习
计算机科学
人工智能
遗传学
基因
信使核糖核酸
转录组
基因表达
作者
Zijun Zhang,Zhicheng Pan,Ying Yi,Zhijie Xie,Samir Adhikari,John W. Phillips,Russ P. Carstens,Douglas L. Black,Yingnian Wu,Yi Xing
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2019-03-25
卷期号:16 (4): 307-310
被引量:102
标识
DOI:10.1038/s41592-019-0351-9
摘要
A major limitation of RNA sequencing (RNA-seq) analysis of alternative splicing is its reliance on high sequencing coverage. We report DARTS (https://github.com/Xinglab/DARTS), a computational framework that integrates deep-learning-based predictions with empirical RNA-seq evidence to infer differential alternative splicing between biological samples. DARTS leverages public RNA-seq big data to provide a knowledge base of splicing regulation via deep learning, thereby helping researchers better characterize alternative splicing using RNA-seq datasets even with modest coverage.
科研通智能强力驱动
Strongly Powered by AbleSci AI