缩小尺度
土地覆盖
气候变化
比例(比率)
土地利用
环境科学
代表性浓度途径
气候模式
土地利用、土地利用的变化和林业
网格
计算机科学
环境资源管理
气候学
地理
地质学
地图学
海洋学
土木工程
大地测量学
工程类
作者
Xuecao Li,Le Yu,Terry L. Sohl,Nicholas Clinton,Wenyu Li,Zhiliang Zhu,Xiaoping Liu,Peng Gong
出处
期刊:Science Bulletin
[Elsevier BV]
日期:2016-08-02
卷期号:61 (21): 1651-1661
被引量:106
标识
DOI:10.1007/s11434-016-1148-1
摘要
Global climate and environmental change studies require detailed land-use and land-cover (LULC) information about the past, present, and future. In this paper, we discuss a methodology for downscaling coarse-resolution (i.e., half-degree) future land use scenarios to finer (i.e., 1 km) resolutions at the global scale using a grid-based spatially explicit cellular automata (CA) model. We account for spatial heterogeneity from topography, climate, soils, and socioeconomic variables. The model uses a global 30 m land cover map (2010) as the base input, a variety of biogeographic and socioeconomic variables, and an empirical analysis to downscale coarse-resolution land use information (specifically urban, crop and pasture). The output of this model offers the most current and finest-scale future LULC dynamics from 2010 to 2100 (with four representative concentration pathway (RCP) scenarios—RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) at a 1 km resolution within a globally consistent framework. The data are freely available for download, and will enable researchers to study the impacts of LULC change at the local scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI