Efficacy of a Deep Learning System for Screening Myopic Maculopathy Based on Color Fundus Photographs

黄斑病 眼底(子宫) 眼科 医学 人工智能 接收机工作特性 验光服务 阶段(地层学) 计算机科学 视网膜病变 地质学 内科学 内分泌学 古生物学 糖尿病
作者
Ruonan Wang,Jiangnan He,Justin Chen,Luyao Ye,Dandan Sun,Lili Yin,Hao Zhou,Lifeng Zhao,Jianfeng Zhu,Haidong Zou,Qichao Tan,Difeng Huang,Bo Liu,Lin He,Weijun Wang,Ying Fan,Xun Xu
出处
期刊:Ophthalmology and therapy [Adis, Springer Healthcare]
卷期号:12 (1): 469-484 被引量:3
标识
DOI:10.1007/s40123-022-00621-9
摘要

The maculopathy in highly myopic eyes is complex. Its clinical diagnosis is a huge workload and subjective. To simply and quickly classify pathologic myopia (PM), a deep learning algorithm was developed and assessed to screen myopic maculopathy lesions based on color fundus photographs.This study included 10,347 ocular fundus photographs from 7606 participants. Of these photographs, 8210 were used for training and validation, and 2137 for external testing. A deep learning algorithm was trained, validated, and externally tested to screen myopic maculopathy which was classified into four categories: normal or mild tessellated fundus, severe tessellated fundus, early-stage PM, and advanced-stage PM. The area under the precision-recall curve, the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and Cohen's kappa were calculated and compared with those of retina specialists.In the validation data set, the model detected normal or mild tessellated fundus, severe tessellated fundus, early-stage PM, and advanced-stage PM with AUCs of 0.98, 0.95, 0.99, and 1.00, respectively; while in the external-testing data set of 2137 photographs, the model had AUCs of 0.99, 0.96, 0.98, and 1.00, respectively.We developed a deep learning model for detection and classification of myopic maculopathy based on fundus photographs. Our model achieved high sensitivities, specificities, and reliable Cohen's kappa, compared with those of attending ophthalmologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loren313完成签到,获得积分0
1秒前
9秒前
moonlight发布了新的文献求助10
13秒前
科研小虫完成签到,获得积分10
14秒前
大轩完成签到 ,获得积分10
17秒前
北国雪未消完成签到 ,获得积分10
21秒前
cdercder应助科研通管家采纳,获得10
25秒前
cdercder应助科研通管家采纳,获得10
25秒前
cdercder应助科研通管家采纳,获得10
25秒前
风信子deon01完成签到,获得积分10
35秒前
37秒前
巫郁发布了新的文献求助10
43秒前
培培完成签到 ,获得积分10
49秒前
ARIA完成签到 ,获得积分10
55秒前
又又完成签到,获得积分10
58秒前
巫郁完成签到,获得积分10
59秒前
稚祎完成签到 ,获得积分10
1分钟前
孝顺的觅风完成签到 ,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
三伏天完成签到,获得积分10
1分钟前
研友_Z7XY28完成签到 ,获得积分10
1分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
1分钟前
北宫完成签到 ,获得积分10
1分钟前
泡芙1207发布了新的文献求助10
1分钟前
1分钟前
wangqinlei发布了新的文献求助10
1分钟前
hanliulaixi完成签到 ,获得积分10
1分钟前
诸葛御风应助Alan采纳,获得30
1分钟前
钟声完成签到,获得积分0
1分钟前
科科通通完成签到,获得积分10
2分钟前
夏明明完成签到,获得积分10
2分钟前
飞快的冰淇淋完成签到 ,获得积分10
2分钟前
hsrlbc完成签到,获得积分10
2分钟前
2分钟前
崩溃完成签到,获得积分10
2分钟前
Jeffery426完成签到,获得积分10
2分钟前
自觉的万言完成签到 ,获得积分10
2分钟前
zhao完成签到,获得积分10
2分钟前
曾泳钧完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300957
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626