DeSeg: auto detector-based segmentation for brain metastases

分割 豪斯多夫距离 人工智能 计算机科学 Sørensen–骰子系数 核医学 模式识别(心理学) 探测器 相似性(几何) 磁共振成像 放射外科 医学 图像分割 计算机视觉 放射科 图像(数学) 放射治疗 电信
作者
Hui Yu,Zhongzhou Zhang,Wenjun Xia,Yan Liu,Lunxin Liu,Wuman Luo,Jiliu Zhou,Yi Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (2): 025002-025002
标识
DOI:10.1088/1361-6560/acace7
摘要

Abstract Delineation of brain metastases (BMs) is a paramount step in stereotactic radiosurgery treatment. Clinical practice has specific expectation on BM auto-delineation that the method is supposed to avoid missing of small lesions and yield accurate contours for large lesions. In this study, we propose a novel coarse-to-fine framework, named detector-based segmentation (DeSeg), to incorporate object-level detection into pixel-wise segmentation so as to meet the clinical demand. DeSeg consists of three components: a center-point-guided single-shot detector to localize the potential lesion regions, a multi-head U-Net segmentation model to refine contours, and a data cascade unit to connect both tasks smoothly. Performance on tiny lesions is measured by the object-based sensitivity and positive predictive value (PPV), while that on large lesions is quantified by dice similarity coefficient (DSC), average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD95). Besides, computational complexity is also considered to study the potential of method in real-time processing. This study retrospectively collected 240 BM patients with Gadolinium injected contrast-enhanced T1-weighted magnetic resonance imaging (T1c-MRI), which were randomly split into training, validating and testing datasets (192, 24 and 24 scans, respectively). The lesions in the testing dataset were further divided into two groups based on the volume size (small S : ≤1.5 cc, N = 88; large L : > 1.5 cc, N = 15). On average, DeSeg yielded a sensitivity of 0.91 and a PPV of 0.77 on S group, and a DSC of 0.86, an ASSD 0f 0.76 mm and a HD95 of 2.31 mm on L group. The results indicated that DeSeg achieved leading sensitivity and PPV for tiny lesions as well as segmentation metrics for large ones. After our clinical validation, DeSeg showed competitive segmentation performance while kept faster processing speed comparing with existing 3D models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GH完成签到,获得积分20
刚刚
胡图图完成签到,获得积分10
刚刚
Rondab应助马婷婷采纳,获得10
2秒前
刘能发布了新的文献求助10
2秒前
radish发布了新的文献求助30
3秒前
3秒前
大模型应助momo采纳,获得10
3秒前
曲蔚然完成签到 ,获得积分10
3秒前
完美世界应助wq采纳,获得10
3秒前
Rubby举报陈德求助涉嫌违规
4秒前
上官若男应助花痴的凝竹采纳,获得30
4秒前
4秒前
4秒前
白开水发布了新的文献求助10
5秒前
CipherSage应助负责莆采纳,获得10
5秒前
宋浩然完成签到,获得积分20
6秒前
SYLH应助壮观的擎采纳,获得10
6秒前
6秒前
tangsenlin发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
欢呼的夏山完成签到,获得积分10
8秒前
快乐的羊驼完成签到,获得积分10
8秒前
8秒前
悠悠发布了新的文献求助10
8秒前
哎莜莜发布了新的文献求助10
9秒前
9秒前
勤恳的映安完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
宋浩然发布了新的文献求助10
12秒前
drdouxia发布了新的文献求助10
13秒前
hanyu发布了新的文献求助10
13秒前
Kenny发布了新的文献求助10
14秒前
Shu发布了新的文献求助30
15秒前
15秒前
木木完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788