Comprehensive understanding of DOM reactivity in anaerobic fermentation of persulfate-pretreated sewage sludge via FT-ICR mass spectrometry and reactomics analysis

化学 反应性(心理学) 溶解有机碳 发酵 过硫酸盐 质谱法 色谱法 环境化学 有机化学 医学 病理 催化作用 替代医学
作者
Jibao Liu,Chenlu Wang,Zhineng Hao,Gen Kondo,Manabu Fujii,Qing‐Long Fu,Yuansong Wei
出处
期刊:Water Research [Elsevier BV]
卷期号:229: 119488-119488 被引量:57
标识
DOI:10.1016/j.watres.2022.119488
摘要

Understanding the composition and reactivity of dissolved organic matter (DOM) at molecular level is vital for deciphering potential regulators or indicators relating to anaerobic process performance, though it was hardly achieved by traditional analyses. Here, the DOM composition, molecular reactivity and transformation in the enhanced sludge fermentation process were comprehensively elucidated using high-resolution mass spectrometry measurement, and data mining with machine learning and paired mass distance (PMD)-based reactomics. In the fermentation process for dewatered sludge, persulfate (PDS) pretreatment presented its highest performance in improving volatile fatty acids (VFAs) production with the increase from 2,711 mg/L to 3,869 mg/L, whereas its activation in the presence of Fe (as well as the hybrid of Fe and activated carbon) led to the decreased VFAs production performance. In addition to the conventional view of improved decomposition and solubilization of N-containing structures from sludge under the sole PDS pretreatment, the improved VFAs production was associated with the alternation of DOM molecular compositions such as humification generating molecules with high O/C, N/C, S/C and aromatic index (AImod). Machine learning was capable of predicting the DOM reactivity classes with 74-76 % accuracy and found that these molecular parameters in addition to nominal oxidation state of carbon (NOSC) were among the most important variables determining the generation or disappearance of bio-resistant molecules in the PDS pretreatment. The constructed PMD-based network suggested that highly connected molecular network with long path length and high diameter was in favor of VFAs production. Especially, -NH related transformation was found to be active under the enhanced fermentation process. Moreover, network topology analysis revealed that CHONS compounds (e.g., C13H27O8N1S1) can be the keystone molecules, suggesting that the presence of sulfur related molecules (e.g., cysteine-like compounds) should be paid more attention as potential regulators or indicators for controlling sludge fermentation performance. This study also proposed the non-targeted DOM molecular analysis and downstream data mining for extending our understanding of DOM transformation at molecular level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大花给大花的求助进行了留言
刚刚
LLLL完成签到,获得积分20
刚刚
xdr关注了科研通微信公众号
1秒前
1秒前
1秒前
1+1发布了新的文献求助10
1秒前
1秒前
慕青应助友好的若剑采纳,获得10
1秒前
lulu完成签到,获得积分10
1秒前
2秒前
正直的三德应助复活采纳,获得10
2秒前
2秒前
西门放狗发布了新的文献求助10
3秒前
WK完成签到,获得积分10
3秒前
laowang发布了新的文献求助10
4秒前
知了完成签到,获得积分10
5秒前
得失心的诅咒完成签到 ,获得积分10
5秒前
5秒前
yjw发布了新的文献求助10
5秒前
luca发布了新的文献求助10
6秒前
妮妮发布了新的文献求助10
6秒前
MOMO完成签到 ,获得积分10
7秒前
7秒前
江十三发布了新的文献求助10
7秒前
tree发布了新的文献求助10
7秒前
香蕉觅云应助1+1采纳,获得10
8秒前
三水伏波完成签到,获得积分10
8秒前
乾坤完成签到,获得积分10
9秒前
milklove完成签到,获得积分20
9秒前
9秒前
10秒前
Harper完成签到,获得积分10
10秒前
文艺的听白完成签到,获得积分10
10秒前
10秒前
斯米昂完成签到,获得积分10
11秒前
11秒前
昏睡的蟠桃应助Ryan采纳,获得50
11秒前
ZJF完成签到,获得积分10
11秒前
wanci应助gxmu6322采纳,获得10
11秒前
我一定会毕业的完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911017
求助须知:如何正确求助?哪些是违规求助? 3456751
关于积分的说明 10891070
捐赠科研通 3182954
什么是DOI,文献DOI怎么找? 1759417
邀请新用户注册赠送积分活动 850956
科研通“疑难数据库(出版商)”最低求助积分说明 792317