亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APT-KGL: An Intelligent APT Detection System Based on Threat Knowledge and Heterogeneous Provenance Graph Learning

计算机科学 人工智能 可扩展性 机器学习 图形 深度学习 数据挖掘 理论计算机科学 数据库
作者
Tieming Chen,Chengyu Dong,Mingqi Lv,Qijie Song,Haiwen Liu,Tiantian Zhu,Kang Xu,Ling Chen,Shouling Ji,Yuan Fan
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:43
标识
DOI:10.1109/tdsc.2022.3229472
摘要

APTs (Advanced Persistent Threats) have caused serious security threats worldwide. Most existing APT detection systems are implemented based on sophisticated forensic analysis rules. However, the design of these rules requires in-depth domain knowledge and the rules lack generalization ability. On the other hand, deep learning technique could automatically create detection model from training samples with little domain knowledge. However, due to the persistence, stealth, and diversity of APT attacks, deep learning technique suffers from a series of problems including difficulties of capturing contextual information, low scalability, dynamic evolving of training samples, and scarcity of training samples. Aiming at these problems, this paper proposes APT-KGL, an intelligent APT detection system based on provenance data and graph neural networks. First, APT-KGL models the system entities and their contextual information in the provenance data by a HPG (Heterogeneous Provenance Graph), and learns a semantic vector representation for each system entity in the HPG in an offline way. Then, APT-KGL performs online APT detection by sampling a small local graph from the HPG and classifying the key system entities as malicious or benign. In addition, to conquer the difficulty of collecting training samples of APT attacks, APT-KGL creates virtual APT training samples from open threat knowledge in a semi-automatic way. We conducted a series of experiments on two provenance datasets with simulated APT attacks. The experiment results show that APT-KGL outperforms other current deep learning based models, and has competitive performance against state-of-the-art rule-based APT detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿藏完成签到,获得积分10
17秒前
happyrrc完成签到,获得积分10
18秒前
29秒前
佚名123完成签到 ,获得积分10
37秒前
47秒前
48秒前
1分钟前
1分钟前
可乐发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Herman发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
上官若男应助Herman采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
boom完成签到 ,获得积分10
3分钟前
SSY发布了新的文献求助10
3分钟前
可乐发布了新的文献求助10
3分钟前
迷路师发布了新的文献求助10
4分钟前
4分钟前
liuliu发布了新的文献求助10
4分钟前
化学完成签到 ,获得积分10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
晓晓发布了新的文献求助10
5分钟前
赘婿应助shi采纳,获得10
5分钟前
乐乐应助yg采纳,获得10
5分钟前
5分钟前
CodeCraft应助NJP采纳,获得10
5分钟前
静水流深完成签到,获得积分10
5分钟前
LiangRen完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
NJP发布了新的文献求助10
6分钟前
Gydl完成签到,获得积分10
6分钟前
可乐发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723876
求助须知:如何正确求助?哪些是违规求助? 5282103
关于积分的说明 15299312
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616578
邀请新用户注册赠送积分活动 1566455
关于科研通互助平台的介绍 1523290