A Novel Hidden Markov Approach to Studying Dynamic Functional Connectivity States in Human Neuroimaging

人类连接体项目 神经影像学 隐马尔可夫模型 动态功能连接 计算机科学 功能磁共振成像 连接体 功能连接 静息状态功能磁共振成像 人工智能 模式识别(心理学) 机器学习 神经科学 心理学
作者
Sana Hussain,Jason Langley,Aaron R. Seitz,Xiaoping Hu,Megan A. K. Peters
出处
期刊:Brain connectivity [Mary Ann Liebert, Inc.]
卷期号:13 (3): 154-163 被引量:8
标识
DOI:10.1089/brain.2022.0031
摘要

Introduction: Hidden Markov models (HMMs) are a popular choice to extract and examine recurring patterns of activity or functional connectivity in neuroimaging data, both in terms of spatial patterns and their temporal progression. Although many diverse HMMs have been applied to neuroimaging data, most have defined states based on activity levels (intensity-based [IB] states) rather than patterns of functional connectivity between brain areas (connectivity-based states), which is problematic if we want to understand connectivity dynamics: IB states are unlikely to provide comprehensive information about dynamic connectivity patterns. Methods: We addressed this problem by introducing a new HMM that defines states based on full functional connectivity (FFC) profiles among brain regions. We empirically explored the behavior of this new model in comparison to existing approaches based on IB or summed functional connectivity states using the Human Connectome Project unrelated 100 functional magnetic resonance imaging "resting-state" dataset. Results: Our FFC model discovered connectivity states with more distinguishable (i.e., unique and separable from each other) patterns than previous approaches, and recovered simulated connectivity-based states more faithfully than the other models tested. Discussion: Thus, if our goal is to extract and interpret connectivity states in neuroimaging data, our new model outperforms previous methods, which miss crucial information about the evolution of functional connectivity in the brain. Hidden Markov models (HMMs) can be used to investigate brain states noninvasively. Previous models "recover" connectivity from intensity-based hidden states, or from connectivity "summed" across nodes. In this study, we introduce a novel connectivity-based HMM and show how it can reveal true connectivity hidden states under minimal assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
3秒前
xiaoxiaojiang完成签到 ,获得积分10
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Sxq发布了新的文献求助10
8秒前
ljx123发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
羽宇发布了新的文献求助10
11秒前
打打应助肥波采纳,获得10
11秒前
liaoyoujiao发布了新的文献求助10
12秒前
白白发布了新的文献求助10
13秒前
李琳完成签到,获得积分10
14秒前
14秒前
CodeCraft应助kk采纳,获得10
15秒前
sicon完成签到,获得积分10
15秒前
16秒前
大模型应助balabala采纳,获得10
17秒前
量子星尘发布了新的文献求助50
18秒前
章鱼完成签到,获得积分10
18秒前
18秒前
John发布了新的文献求助30
20秒前
量子星尘发布了新的文献求助10
21秒前
lier应助郑牛牛采纳,获得10
22秒前
22秒前
鳗鱼中心完成签到,获得积分10
23秒前
24秒前
冷静灵竹发布了新的文献求助10
24秒前
满意发布了新的文献求助20
24秒前
浮游应助hkf采纳,获得10
25秒前
打打应助脚丫当当采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
Joyboy发布了新的文献求助30
27秒前
27秒前
zero发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4666247
求助须知:如何正确求助?哪些是违规求助? 4046947
关于积分的说明 12517364
捐赠科研通 3739565
什么是DOI,文献DOI怎么找? 2065248
邀请新用户注册赠送积分活动 1094813
科研通“疑难数据库(出版商)”最低求助积分说明 975124