亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physiological sensing of personal thermal comfort with wearable devices in fan-assisted cooling environments in the tropics

热舒适性 热感觉 热的 模拟 空调 可穿戴计算机 皮肤温度 环境科学 计算机科学 工程类 机械工程 气象学 生物医学工程 物理 嵌入式系统
作者
Chao Cen,Siyu Cheng,Nyuk Hien Wong
出处
期刊:Building and Environment [Elsevier BV]
卷期号:225: 109622-109622 被引量:10
标识
DOI:10.1016/j.buildenv.2022.109622
摘要

Thermal comfort prediction with physiological parameters has been getting increasing attention due to the advances in wearable sensing technology. Previous studies in chamber and air-conditioning environments indicate that physiological parameter-based group and personal comfort models can predict thermal comfort accurately. To demonstrate whether physiological signals are reliable indicators for thermal comfort prediction in fan-assisted cooling environments, a series of experiments were conducted to collect participants’ physiological and thermal responses in a mixed-mode fan-assisted cooling environment in tropical Singapore. Group models and personal comfort models with different machine learning algorithms were then developed. The results show that the accuracy ranges of group thermal comfort models based on all measured physiological features for thermal sensation vote, thermal preference, and air velocity preference predictions are (62.4%, 73.3%), (74.5%, 82.2%), and (67.8%, 77.7%), respectively. For personal comfort models (PCMs), PCMs with all physiological features as inputs have a median accuracy/Area Under the Curve (AUC) of 82.0%/0.92, 84.5%/0.92, and 80.7%/0.91 for TSV, TP, and VP prediction, respectively. Additionally, personal comfort models based on four groups of input features were developed and compared to explore the feasibility of using fewer physiological parameters to predict thermal comfort. Finally, this study demonstrates that only using two skin temperatures from wearable body parts can predict thermal comfort accurately in fan-assisted cooling thermal environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rebeccaiscute发布了新的文献求助50
刚刚
故酒举报wdlc求助涉嫌违规
6秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
善学以致用应助K.I.D采纳,获得10
32秒前
34秒前
kaiii发布了新的文献求助30
39秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
tiantian完成签到 ,获得积分10
2分钟前
mrjohn完成签到,获得积分0
2分钟前
2分钟前
科研通AI5应助namseok采纳,获得10
2分钟前
2分钟前
2分钟前
K.I.D发布了新的文献求助10
2分钟前
namseok发布了新的文献求助10
3分钟前
顾矜应助菲菲采纳,获得10
3分钟前
3分钟前
隐形曼青应助namseok采纳,获得10
3分钟前
K.I.D完成签到,获得积分10
3分钟前
3分钟前
3分钟前
菲菲发布了新的文献求助10
3分钟前
菲菲完成签到,获得积分10
3分钟前
Lucas应助无心烛采纳,获得10
4分钟前
automan完成签到,获得积分10
4分钟前
脑洞疼应助淡然绝山采纳,获得10
4分钟前
大琪哥哥要顺利毕业完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
修炼成绝完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161591
求助须知:如何正确求助?哪些是违规求助? 4355017
关于积分的说明 13559148
捐赠科研通 4199756
什么是DOI,文献DOI怎么找? 2303281
邀请新用户注册赠送积分活动 1303289
关于科研通互助平台的介绍 1249159