Physiological sensing of personal thermal comfort with wearable devices in fan-assisted cooling environments in the tropics

热舒适性 热感觉 热的 模拟 空调 可穿戴计算机 皮肤温度 环境科学 计算机科学 工程类 机械工程 气象学 生物医学工程 物理 嵌入式系统
作者
Chao Cen,Siyu Cheng,Nyuk Hien Wong
出处
期刊:Building and Environment [Elsevier]
卷期号:225: 109622-109622 被引量:10
标识
DOI:10.1016/j.buildenv.2022.109622
摘要

Thermal comfort prediction with physiological parameters has been getting increasing attention due to the advances in wearable sensing technology. Previous studies in chamber and air-conditioning environments indicate that physiological parameter-based group and personal comfort models can predict thermal comfort accurately. To demonstrate whether physiological signals are reliable indicators for thermal comfort prediction in fan-assisted cooling environments, a series of experiments were conducted to collect participants’ physiological and thermal responses in a mixed-mode fan-assisted cooling environment in tropical Singapore. Group models and personal comfort models with different machine learning algorithms were then developed. The results show that the accuracy ranges of group thermal comfort models based on all measured physiological features for thermal sensation vote, thermal preference, and air velocity preference predictions are (62.4%, 73.3%), (74.5%, 82.2%), and (67.8%, 77.7%), respectively. For personal comfort models (PCMs), PCMs with all physiological features as inputs have a median accuracy/Area Under the Curve (AUC) of 82.0%/0.92, 84.5%/0.92, and 80.7%/0.91 for TSV, TP, and VP prediction, respectively. Additionally, personal comfort models based on four groups of input features were developed and compared to explore the feasibility of using fewer physiological parameters to predict thermal comfort. Finally, this study demonstrates that only using two skin temperatures from wearable body parts can predict thermal comfort accurately in fan-assisted cooling thermal environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Candy完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
3秒前
啦啦啦发布了新的文献求助10
3秒前
出门见喜发布了新的文献求助10
3秒前
4秒前
5秒前
酷波er应助Wqian采纳,获得10
5秒前
myelin完成签到,获得积分10
5秒前
熊奎懿发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
77完成签到,获得积分20
6秒前
6秒前
zhenglinmama发布了新的文献求助10
7秒前
PANGDA发布了新的文献求助10
8秒前
peterwang35完成签到,获得积分10
8秒前
大个应助nxdsk采纳,获得10
8秒前
风中冰香应助nxdsk采纳,获得10
8秒前
小蘑菇应助nxdsk采纳,获得10
8秒前
FashionBoy应助nxdsk采纳,获得10
9秒前
今后应助nxdsk采纳,获得10
9秒前
桐桐应助nxdsk采纳,获得10
9秒前
思源应助nxdsk采纳,获得10
9秒前
周周完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
77发布了新的文献求助10
10秒前
11秒前
12秒前
zzz发布了新的文献求助10
13秒前
13秒前
badgerwithfisher完成签到,获得积分10
14秒前
郁浅应助hwyk采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533028
求助须知:如何正确求助?哪些是违规求助? 4621501
关于积分的说明 14578871
捐赠科研通 4561540
什么是DOI,文献DOI怎么找? 2499379
邀请新用户注册赠送积分活动 1479243
关于科研通互助平台的介绍 1450498