Capturing the Complex Relationship Between Internal and External Training Load: A Data-Driven Approach

培训(气象学) 计算机科学 数据驱动 物理医学与康复 人工智能 医学 物理 气象学
作者
Stephan van der Zwaard,Ruby Otter,Matthias Kempe,Arno Knobbe,Inge K. Stoter
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:18 (6): 634-642 被引量:7
标识
DOI:10.1123/ijspp.2022-0493
摘要

Training load is typically described in terms of internal and external load. Investigating the coupling of internal and external training load is relevant to many sports. Here, continuous kernel-density estimation (KDE) may be a valuable tool to capture and visualize this coupling.Using training load data in speed skating, we evaluated how well bivariate KDE plots describe the coupling of internal and external load and differentiate between specific training sessions, compared to training impulse scores or intensity distribution into training zones.On-ice training sessions of 18 young (sub)elite speed skaters were monitored for velocity and heart rate during 2 consecutive seasons. Training session types were obtained from the coach's training scheme, including endurance, interval, tempo, and sprint sessions. Differences in training load between session types were assessed using Kruskal-Wallis or Kolmogorov-Smirnov tests for training impulse and KDE scores, respectively.Training impulse scores were not different between training session types, except for extensive endurance sessions. However, all training session types differed when comparing KDEs for heart rate and velocity (both P < .001). In addition, 2D KDE plots of heart rate and velocity provide detailed insights into the (subtle differences in) coupling of internal and external training load that could not be obtained by 2D plots using training zones.2D KDE plots provide a valuable tool to visualize and inform coaches on the (subtle differences in) coupling of internal and external training load for training sessions. This will help coaches design better training schemes aiming at desired training adaptations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林狗发布了新的文献求助10
刚刚
1秒前
shuaixiaoyu完成签到,获得积分10
3秒前
ChenYX完成签到,获得积分10
3秒前
4秒前
qxxxxx发布了新的文献求助100
5秒前
rong发布了新的文献求助10
7秒前
7秒前
ChenYX发布了新的文献求助10
7秒前
sssss发布了新的文献求助10
8秒前
10秒前
不发sci不改名完成签到,获得积分10
10秒前
11秒前
12秒前
zhuzhu007完成签到 ,获得积分10
12秒前
酷波er应助sssss采纳,获得10
13秒前
领导范儿应助小吉利采纳,获得10
13秒前
zcy发布了新的文献求助10
15秒前
Akim应助萌酱采纳,获得10
17秒前
18秒前
大模型应助tree采纳,获得10
21秒前
23秒前
可爱的函函应助LHZ采纳,获得10
23秒前
99668发布了新的文献求助10
24秒前
happyboy2008完成签到 ,获得积分10
25秒前
科研通AI2S应助琳琳采纳,获得10
26秒前
He完成签到,获得积分10
27秒前
Doctor_wan89发布了新的文献求助10
27秒前
可爱的函函应助echoxq采纳,获得10
27秒前
27秒前
30秒前
czx发布了新的文献求助10
34秒前
34秒前
nanjiren完成签到,获得积分10
38秒前
39秒前
李耀玲发布了新的文献求助10
39秒前
脑洞疼应助ba采纳,获得10
40秒前
上官若男应助科研通管家采纳,获得10
41秒前
小蘑菇应助科研通管家采纳,获得10
41秒前
领导范儿应助科研通管家采纳,获得10
41秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171601
求助须知:如何正确求助?哪些是违规求助? 3707138
关于积分的说明 11696191
捐赠科研通 3392551
什么是DOI,文献DOI怎么找? 1860892
邀请新用户注册赠送积分活动 920582
科研通“疑难数据库(出版商)”最低求助积分说明 832754