Sample-imbalanced wafer map defects classification based on Jacobian regularized generative adversarial network

雅可比矩阵与行列式 样品(材料) 生成对抗网络 薄脆饼 生成语法 计算机科学 人工智能 对抗制 模式识别(心理学) 材料科学 数学 深度学习 物理 应用数学 纳米技术 热力学
作者
Jialin Li,Ran Tao,Shirong Li,Yuxiong Li,Xianzhen Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adb327
摘要

Abstract Wafer defect classification is a key component in the wafer manufacturing process. Under stable operating conditions and sufficient test data, an effective wafer defect classification model can help engineers quickly and accurately judge and solve problems in the production process. However, the complexity of the production process leads to serious imbalance between various types of defects, which greatly reduces the performance of traditional defect classification method. This paper proposes a Jacobi regularized generative adversarial network (JRGAN) for sample imbalanced wafer image defect generation. The JRGAN architecture includes a generator, a discriminator, a Jacobi regularization term, and an auxiliary classifier. The model takes random noise and sample labels as input, and integrates the Jacobi regularization term into the generator to minimize the statistical difference between the generated image and the real image. The regularization term in the discriminator improves the robustness of the network training process. This paper uses the MIR-WM811K and MixedWM38 datasets collected from real factories to verify the effectiveness of the JRGAN model proposed in this paper on the residual neural network (ResNet). Experimental results show that the proposed method can improve the quality of generated samples and improve the accuracy of wafer defect classification. The defect classification accuracy in the MIR-WM811K and MixedWM38 datasets is 97.14% and 97.38%, which is 2.21% and 0.29% higher than that of the original datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
发发发完成签到,获得积分10
1秒前
Plum22发布了新的文献求助10
1秒前
顾晟杰发布了新的文献求助10
1秒前
浮游应助jiayou采纳,获得10
1秒前
1秒前
平常毛衣发布了新的文献求助10
2秒前
3秒前
3秒前
快乐书琴发布了新的文献求助10
3秒前
kuankuan发布了新的文献求助20
4秒前
4秒前
张哥源完成签到,获得积分10
4秒前
XZ123发布了新的文献求助10
4秒前
4秒前
Gin发布了新的文献求助30
5秒前
5秒前
高立蕊发布了新的文献求助10
6秒前
Al完成签到,获得积分10
6秒前
yc完成签到,获得积分10
6秒前
7秒前
WUHUIWEN完成签到,获得积分10
7秒前
8秒前
dyyjlol发布了新的文献求助10
8秒前
Ava应助现代啤酒采纳,获得10
9秒前
9秒前
shitaocameron发布了新的文献求助10
9秒前
子车茗应助sxuzxk采纳,获得20
9秒前
10秒前
旅行者发布了新的文献求助10
10秒前
大方的凌波完成签到,获得积分10
10秒前
今后应助开心的凝云采纳,获得10
11秒前
bkagyin应助IU采纳,获得30
11秒前
nn发布了新的文献求助30
11秒前
11秒前
英俊的铭应助shitaocameron采纳,获得10
12秒前
爱吃蜂蜜完成签到,获得积分10
12秒前
Nicetomeet球发布了新的文献求助50
14秒前
clover完成签到 ,获得积分10
14秒前
荣枫完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920690
求助须知:如何正确求助?哪些是违规求助? 4192172
关于积分的说明 13020554
捐赠科研通 3963175
什么是DOI,文献DOI怎么找? 2172390
邀请新用户注册赠送积分活动 1190226
关于科研通互助平台的介绍 1099167