Sample-imbalanced wafer map defects classification based on Jacobian regularized generative adversarial network

雅可比矩阵与行列式 样品(材料) 生成对抗网络 薄脆饼 生成语法 计算机科学 人工智能 对抗制 模式识别(心理学) 材料科学 数学 深度学习 物理 应用数学 纳米技术 热力学
作者
Jialin Li,Ran Tao,Shirong Li,Yuxiong Li,Xianzhen Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (3): 036112-036112
标识
DOI:10.1088/1361-6501/adb327
摘要

Abstract Wafer defect classification is a key component in the wafer manufacturing process. Under stable operating conditions and sufficient test data, an effective wafer defect classification model can help engineers quickly and accurately judge and solve problems in the production process. However, the complexity of the production process leads to serious imbalance between various types of defects, which greatly reduces the performance of traditional defect classification method. This paper proposes a Jacobi regularized generative adversarial network (JRGAN) for sample imbalanced wafer image defect generation. The JRGAN architecture includes a generator, a discriminator, a Jacobi regularization term, and an auxiliary classifier. The model takes random noise and sample labels as input, and integrates the Jacobi regularization term into the generator to minimize the statistical difference between the generated image and the real image. The regularization term in the discriminator improves the robustness of the network training process. This paper uses the MIR-WM811K and MixedWM38 datasets collected from real factories to verify the effectiveness of the JRGAN model proposed in this paper on the residual neural network (ResNet). Experimental results show that the proposed method can improve the quality of generated samples and improve the accuracy of wafer defect classification. The defect classification accuracy in the MIR-WM811K and MixedWM38 datasets is 97.14% and 97.38%, which is 2.21% and 0.29% higher than that of the original datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
an完成签到,获得积分10
刚刚
刚刚
科研通AI6应助拾起采纳,获得10
1秒前
憨憨发布了新的文献求助10
1秒前
1秒前
1秒前
生物小白完成签到,获得积分10
1秒前
1秒前
丰富的冰棍完成签到 ,获得积分10
1秒前
丘比特应助hl采纳,获得10
2秒前
欣喜的尔烟完成签到,获得积分10
2秒前
wang完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
可爱的函函应助dou采纳,获得10
4秒前
4秒前
4秒前
4秒前
FABLE完成签到 ,获得积分10
4秒前
anan发布了新的文献求助10
5秒前
孤独的鹰完成签到,获得积分10
5秒前
6秒前
淡定碧玉发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
复杂数据线完成签到,获得积分10
7秒前
姜姜发布了新的文献求助10
8秒前
共享精神应助Lollipop采纳,获得10
8秒前
yanghaiyu发布了新的文献求助10
8秒前
CodeCraft应助cmh采纳,获得10
8秒前
8秒前
8秒前
潘爱玲发布了新的文献求助10
8秒前
8秒前
小蘑菇应助任性行天采纳,获得10
8秒前
jasmine发布了新的文献求助10
9秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581856
求助须知:如何正确求助?哪些是违规求助? 4666055
关于积分的说明 14760392
捐赠科研通 4607999
什么是DOI,文献DOI怎么找? 2528469
邀请新用户注册赠送积分活动 1497726
关于科研通互助平台的介绍 1466614