Instability prediction under distorted inflow based on deep learning neural networks in an axial flow compressor

物理 流入 不稳定性 人工神经网络 流量(数学) 轴流压缩机 气体压缩机 机械 人工智能 热力学 计算机科学
作者
Jichao Li,Yuyang Deng,Xiaoyu Zhang,Wentao Wang,Boning Fan,Feng Peng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:1
标识
DOI:10.1063/5.0241142
摘要

Traditional stall prediction methods often rely on empirical formulas and models, which have certain limitations. The deep learning model was introduced to predict stall and surge under distorted inflow conditions in an axial flow compressor, and the model can learn from the dynamic pressure data containing stall processes measured on the casing wall by use of a long short-term memory neural network. In order to enhance the model's generalization capability and prediction accuracy, the model parameters are optimized through the Northern Goshawk optimization algorithm. In the experimental validation, the stall prediction model was first trained by using the collected stalling signal. Then, a step-by-step prediction method was used to verify the accuracy of the prediction model under uniform and distorted inflow conditions. Subsequently, the recursive prediction technology is used to predict the instability under different inflow conditions in both subsonic and supersonic axial flow compressors. By comparing with the measured stalling data under uniform and distorted inflow, the model accurately and timely predicts stall and surge signal through a self-learning mechanism when inputting non-stall pressure data. Regardless of whether the instability routes are spikes and modal-wave stall or surge, the model can predict the instability at least 1 s in advance, and it leaves enough time for the anti-surge actuator to operate. This study not only significantly improves the real-time and accuracy of predictions but also demonstrates the potential application value of deep learning in the field of aero engines, contributing to enhanced safety and reliability of aircraft engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rika7发布了新的文献求助10
1秒前
王灰灰1完成签到 ,获得积分10
1秒前
格兰德法泽尔完成签到,获得积分10
2秒前
2秒前
3秒前
子默完成签到,获得积分10
3秒前
日月同辉发布了新的文献求助10
4秒前
dyuguo3完成签到 ,获得积分10
4秒前
full完成签到,获得积分20
5秒前
自由山槐完成签到,获得积分10
5秒前
一番完成签到,获得积分10
6秒前
6秒前
爆米花应助羞涩的妙菱采纳,获得10
7秒前
Gavin_Li完成签到,获得积分10
7秒前
研友_VZG7GZ应助子默采纳,获得10
8秒前
8秒前
断鸿完成签到 ,获得积分10
9秒前
x小张完成签到,获得积分10
9秒前
10秒前
11秒前
瘦瘦谷槐完成签到,获得积分10
11秒前
平常芷波完成签到,获得积分10
11秒前
11秒前
12秒前
Lucas应助Nancy采纳,获得10
12秒前
科研通AI5应助Rika7采纳,获得10
12秒前
所所应助负责的方盒采纳,获得10
12秒前
小马甲应助uone采纳,获得10
13秒前
13秒前
虚幻的大大完成签到,获得积分10
13秒前
可爱的函函应助一番采纳,获得10
13秒前
小二郎应助马尼拉采纳,获得10
14秒前
14秒前
开朗的夜阑完成签到,获得积分10
14秒前
lixinyue发布了新的文献求助10
15秒前
SciGPT应助cbbb采纳,获得10
15秒前
金阿垚在科研完成签到 ,获得积分10
16秒前
17秒前
17秒前
春夏发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775