CVDLLM: Automated Cardiovascular Disease Diagnosis with Large-Language-Model-Assisted Graph Attentive Feature Interaction

计算机科学 特征(语言学) 图形 人工智能 自然语言处理 疾病 理论计算机科学 医学 语言学 病理 哲学
作者
Xihe Qiu,Haoyu Wang,Xiaoyu Tan,Yaochu Jin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:4
标识
DOI:10.1109/tai.2025.3527401
摘要

Electrocardiogram (ECG) measurements are essential for detecting and treating cardiovascular disease (CVD). However, manual evaluation of ECGs is prone to errors due to morphological variations. Although machine learning methods have shown promise in diagnosing diseases, automatic CVD diagnosis based on ECGs is still suffering from low diagnosis accuracy due to the limited usage of time-series information and inter-lead correlations. In this paper, we propose a large language model-assisted graph attentive feature interaction learning framework (CVDLLM) for automatic ECG diagnosis. It utilizes ECG data from twelve leads to classify eight heart diseases, including rhythm abnormalities and normal conditions. Our framework combines convolutional and recurrent neural networks for independent time-series feature extraction from 12-lead ECG signals. By incorporating features extracted by heart rate variability (HRV) analysis, we employ graph attention neural networks (GAT) and self-attentive feature interaction mechanism (GSAT) for feature interaction and model learning. Leveraging large language models (LLMs) with pre-trained knowledge bases and advanced language comprehension, we extract and learn semantic embeddings from medical case data. This approach equips our framework with a deep semantic layer, significantly enhancing its capacity to understand complex medical texts. Additionally, by representing the twelve leads as a graph, our framework enables highly accurate disease diagnosis based on spatial and temporal interactions with 12-lead ECG signals. We evaluate the performance of our proposed framework and our framework achieves state-of-the-art performance with accuracy, precision, recall, and F1-score. Code is available at https://github.com/AnonymousBoy123/CVDLLM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲疾发布了新的文献求助10
刚刚
1秒前
dys发布了新的文献求助10
1秒前
fqk发布了新的文献求助10
1秒前
王旭阳完成签到,获得积分10
1秒前
明理志泽完成签到,获得积分10
2秒前
DavidXu发布了新的文献求助10
2秒前
2秒前
落尘发布了新的文献求助10
2秒前
奶油小饼干完成签到 ,获得积分10
2秒前
3秒前
3秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
3秒前
3秒前
称心枫发布了新的文献求助10
3秒前
科研通AI6应助小李找文献采纳,获得10
3秒前
3秒前
TIDUS完成签到,获得积分10
3秒前
xmjxc发布了新的文献求助10
4秒前
4秒前
喜悦发布了新的文献求助10
6秒前
6秒前
zhong发布了新的文献求助200
7秒前
7秒前
故意不上钩的鱼应助ZED采纳,获得10
7秒前
8秒前
我不吃葱完成签到 ,获得积分10
8秒前
羔羊完成签到,获得积分10
8秒前
dys完成签到,获得积分10
8秒前
9秒前
明亮白昼发布了新的文献求助10
9秒前
Jasper应助gloss采纳,获得10
9秒前
典雅的静发布了新的文献求助10
9秒前
FashionBoy应助明理志泽采纳,获得10
9秒前
夜幕流星发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
12秒前
科研通AI6应助陈帅帅采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329313
求助须知:如何正确求助?哪些是违规求助? 4468897
关于积分的说明 13907268
捐赠科研通 4361932
什么是DOI,文献DOI怎么找? 2396101
邀请新用户注册赠送积分活动 1389467
关于科研通互助平台的介绍 1360296