Screening of potential biomarkers in peripheral blood of patients with depression based on weighted gene co-expression network analysis and machine learning algorithms

小桶 生物标志物 计算生物学 基因 基因本体论 疾病 生物信息学 基因表达 生物 医学 遗传学 内科学
作者
Zhe Wang,Zhe Meng,Che Chen
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:13 被引量:14
标识
DOI:10.3389/fpsyt.2022.1009911
摘要

The prevalence of depression has been increasing worldwide in recent years, posing a heavy burden on patients and society. However, the diagnostic and therapeutic tools available for this disease are inadequate. Therefore, this research focused on the identification of potential biomarkers in the peripheral blood of patients with depression.The expression dataset GSE98793 of depression was provided by the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds). Initially, differentially expressed genes (DEGs) were detected in GSE98793. Subsequently, the most relevant modules for depression were screened according to weighted gene co-expression network analysis (WGCNA). Finally, the identified DEGs were mapped to the WGCNA module genes to obtain the intersection genes. In addition, Gene Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were conducted on these genes. Moreover, biomarker screening was carried out by protein-protein interaction (PPI) network construction of intersection genes on the basis of various machine learning algorithms. Furthermore, the gene set enrichment analysis (GSEA), immune function analysis, transcription factor (TF) analysis, and the prediction of the regulatory mechanism were collectively performed on the identified biomarkers. In addition, we also estimated the clinical diagnostic ability of the obtained biomarkers, and performed Mfuzz expression pattern clustering and functional enrichment of the most potential biomarkers to explore their regulatory mechanisms. Finally, we also perform biomarker-related drug prediction.Differential analysis was used for obtaining a total of 550 DEGs and WGCNA for obtaining 1,194 significant genes. Intersection analysis of the two yielded 140 intersection genes. Biological functional analysis indicated that these genes had a major role in inflammation-related bacterial infection pathways and cardiovascular diseases such as atherosclerosis. Subsequently, the genes S100A12, SERPINB2, TIGIT, GRB10, and LHFPL2 in peripheral serum were identified as depression biomarkers by using machine learning algorithms. Among them, S100A12 is the most valuable biomarker for clinical diagnosis. Finally, antidepressants, including disodium selenite and eplerenone, were predicted.The genes S100A12, TIGIT, SERPINB2, GRB10, and LHFPL2 in peripheral serum are viable diagnostic biomarkers for depression. and contribute to the diagnosis and prevention of depression in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Enso完成签到 ,获得积分10
1秒前
fei关闭了fei文献求助
1秒前
shi关注了科研通微信公众号
2秒前
Ava应助月亮采纳,获得10
3秒前
smile完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
tangli完成签到 ,获得积分10
6秒前
6秒前
彩虹捕手发布了新的文献求助10
7秒前
BowieHuang应助谦让的小姜采纳,获得10
8秒前
verymiao完成签到 ,获得积分10
8秒前
丘比特应助YY采纳,获得10
8秒前
丘比特应助929采纳,获得30
8秒前
Red-Rain发布了新的文献求助10
9秒前
来来完成签到,获得积分10
10秒前
谁煮花生完成签到,获得积分10
10秒前
10秒前
香菜完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
刘子怡发布了新的文献求助10
11秒前
wwwwwcy发布了新的文献求助10
11秒前
11秒前
月亮完成签到,获得积分10
12秒前
华仔应助乐观的小猫咪采纳,获得10
12秒前
斯文败类应助蓝天采纳,获得10
12秒前
xiaojinzi完成签到,获得积分10
13秒前
mooncake187完成签到,获得积分10
14秒前
科研通AI6应助queer采纳,获得10
14秒前
斯文败类应助害羞的宛亦采纳,获得10
15秒前
15秒前
蓝天碧海小西服完成签到,获得积分0
15秒前
龙腾虎跃发布了新的文献求助10
15秒前
法郎发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536258
求助须知:如何正确求助?哪些是违规求助? 4623988
关于积分的说明 14590229
捐赠科研通 4564430
什么是DOI,文献DOI怎么找? 2501723
邀请新用户注册赠送积分活动 1480520
关于科研通互助平台的介绍 1451794