MG-Net: Multi-level global-aware network for thymoma segmentation

计算机科学 分割 卷积神经网络 胸腺瘤 人工智能 自编码 特征(语言学) 编码器 块(置换群论) 模式识别(心理学) 深度学习 操作系统 病理 哲学 几何学 医学 语言学 数学
作者
Jingyuan Li,Wenfang Sun,Karen M. von Deneen,Fan Xiao,Gang An,Guangbin Cui,Yi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106635-106635 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.106635
摘要

Automatic thymoma segmentation in preoperative contrast-enhanced computed tomography (CECT) images makes great sense for diagnosis. Although convolutional neural networks (CNNs) are distinguished in medical image segmentation, they are challenged by thymomas with various shapes, scales and textures, owing to the intrinsic locality of convolution operations. In order to overcome this deficit, we built a deep learning network with enhanced global-awareness for thymoma segmentation.We propose a multi-level global-aware network (MG-Net) for thymoma segmentation, in which the multi-level feature interaction and integration are jointly designed to enhance the global-awareness of CNNs. Particularly, we design the cross-attention block (CAB) to calculate pixel-wise interactions of multi-level features, resulting in the Global Enhanced Convolution Block, which can enable the network to handle various thymomas by strengthening the global-awareness of the encoder. We further devise the Global Spatial Attention Module to integrate coarse- and fine-grain information for enhancing the semantic consistency between the encoder and decoder with CABs. We also develop an Adaptive Attention Fusion Module to adaptively aggregate different semantic-scale features in the decoder to preserve comprehensive details.The MG-Net has been evaluated against several state-of-the-art models on the self-collected CECT dataset and NIH Pancreas-CT dataset. Results suggest that all designed components are effective, and MG-Net has superior segmentation performance and generalization ability over existing models.Both the qualitative and quantitative experimental results indicate that our MG-Net with global-aware ability can achieve accurate thymoma segmentation and has generalization ability in different tasks. The code is available at: https://github.com/Leejyuan/MGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟嘟嘟完成签到,获得积分10
2秒前
2秒前
adeno发布了新的文献求助10
2秒前
小方完成签到 ,获得积分10
3秒前
orixero应助土星采纳,获得10
5秒前
迅速的孤菱完成签到,获得积分10
5秒前
李健应助快乐的研究生采纳,获得10
6秒前
wwx完成签到,获得积分10
6秒前
7秒前
kkk发布了新的文献求助10
8秒前
22222发布了新的文献求助10
8秒前
纪飞松发布了新的文献求助10
9秒前
大模型应助仙人采纳,获得10
10秒前
10秒前
采珺完成签到,获得积分10
11秒前
WXQ完成签到 ,获得积分10
11秒前
逍遥完成签到,获得积分20
12秒前
拼搏盼山完成签到 ,获得积分10
12秒前
布曲完成签到 ,获得积分10
12秒前
科研通AI5应助tian采纳,获得10
13秒前
13秒前
13秒前
Ingrid_26完成签到,获得积分10
13秒前
Drwang完成签到,获得积分10
13秒前
15秒前
16秒前
马儿饿了要吃草完成签到,获得积分10
17秒前
旺仔发布了新的文献求助10
18秒前
沉静尔白发布了新的文献求助20
19秒前
美丽千万完成签到,获得积分20
19秒前
mares完成签到,获得积分10
19秒前
19秒前
20秒前
st发布了新的文献求助10
22秒前
23秒前
zou发布了新的文献求助10
23秒前
kkk关注了科研通微信公众号
24秒前
英姑应助眼科女医生小魏采纳,获得10
27秒前
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783723
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239212
捐赠科研通 3044381
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759172