已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent advances in algal bloom detection and prediction technology using machine learning

水华 计算机科学 领域(数学) 布鲁姆 水质 水生生态系统 人类健康 环境科学 人工智能 机器学习 生态学 浮游植物 生物 营养物 医学 数学 环境卫生 纯数学
作者
Jungsu Park,Keval K. Patel,Woo Hyoung Lee
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:938: 173546-173546 被引量:51
标识
DOI:10.1016/j.scitotenv.2024.173546
摘要

Harmful algal blooms (HAB) including red tides and cyanobacteria are a significant environmental issue that can have harmful effects on aquatic ecosystems and human health. Traditional methods of detecting and managing algal blooms have been limited by their reliance on manual observation and analysis, which can be time-consuming and costly. Recent advances in machine learning (ML) technology have shown promise in improving the accuracy and efficiency of algal bloom detection and prediction. This paper provides an overview of the latest developments in using ML for algal bloom detection and prediction using various water quality parameters and environmental factors. First, we introduced ML for algal bloom prediction using regression and classification models. Then we explored image-based ML for algae detection by utilizing satellite images, surveillance cameras, and microscopic images. This study also highlights several real-world examples of successful implementation of ML for algal bloom detection and prediction. These examples show how ML can enhance the accuracy and efficiency of detecting and predicting algal blooms, contributing to the protection of aquatic ecosystems and human health. The study also outlines recent efforts to enhance the field applicability of ML models and suggests future research directions. A recent interest in explainable artificial intelligence (XAI) was discussed in an effort to understand the most influencing environmental factors on algal blooms. XAI facilitates interpretations of ML model results, thereby enhancing the models' usability for decision-making in field management and improving their overall applicability in real-world settings. We also emphasize the significance of obtaining high-quality, field-representative data to enhance the efficiency of ML applications. The effectiveness of ML models in detecting and predicting algal blooms can be improved through management strategies for data quality, such as pre-treating missing data and integrating diverse datasets into a unified database. Overall, this paper presents a comprehensive review of the latest advancements in managing algal blooms using ML technology and proposes future research directions to enhance the utilization of ML techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文听筠完成签到,获得积分10
刚刚
上官若男应助yun采纳,获得10
刚刚
刚刚
1秒前
独特的秋发布了新的文献求助10
2秒前
3秒前
4秒前
优秀的雨筠完成签到 ,获得积分10
5秒前
kcl发布了新的文献求助10
6秒前
Maria完成签到 ,获得积分10
6秒前
李爱国应助Bonnie采纳,获得10
6秒前
FlaKe发布了新的文献求助10
8秒前
搜集达人应助独特的秋采纳,获得10
9秒前
9秒前
沉静以柳完成签到,获得积分20
9秒前
11秒前
11秒前
13秒前
迅速的丑完成签到,获得积分10
14秒前
梦里潇湘完成签到 ,获得积分10
14秒前
16秒前
贝贝发布了新的文献求助10
17秒前
Aimee发布了新的文献求助10
17秒前
风中的怀梦完成签到 ,获得积分20
18秒前
深情安青应助kcl采纳,获得10
18秒前
想人陪的远锋完成签到,获得积分10
18秒前
李某某完成签到 ,获得积分10
18秒前
20秒前
22秒前
23秒前
8R60d8应助与一人同游采纳,获得10
24秒前
赘婿应助cyy采纳,获得10
24秒前
shi hui发布了新的文献求助10
26秒前
Mei发布了新的文献求助10
26秒前
26秒前
27秒前
绿狗玩偶发布了新的文献求助10
27秒前
唐的一笔完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938