A Comprehensive Adaptive Interpretable Takagi-Sugeuo-Kang Fuzzy Classifier for Fatigue Driving Detection

可解释性 规范化(社会学) 计算机科学 人工智能 分类器(UML) 模糊逻辑 脑电图 模式识别(心理学) 机器学习 数据挖掘 心理学 精神科 社会学 人类学
作者
Dongrui Gao,Shihong Liu,Yingxian Gao,Pengrui Li,Haokai Zhang,Manqing Wang,Yan Shen,Lutao Wang,Yongqing Zhang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/tfuzz.2024.3399400
摘要

Electroencephalogram (EEG) signals, as a reliable biological indicator, have been widely used in fatigue driving detection due to their capacity to reflect a driver's cognitive and neural response state. However, EEG signals have problems such as imbalanced data distribution, significant differences between subjects, and complex scenes, which affect the detection effect. Small commonalities between input objects can be interpreted as important information about an entire sample. Therefore, to retain as much information as possible, We design a new approach for integrating fuzzy features, comprehensive adaptive interpretable TSK fuzzy classifier(CAI-TSK-FC). It not only captures the features of multiple subclassifiers more efficiently and alleviates the dataset imbalance problem. Also, it can reduce the accumulation of error information by randomly retaining fuzzy rules as well as normalization. Finally, we linearly combine the results of multiple subclassifiers to comprehensively consider the learning effect of multiple subclassifiers to adapt to different subjects and datasets. Experiments conducted on both self-made and public datasets (SEED-VIG) show that CAI-TSK-FC has good performance and interpretability on different EEG fatigue driving datasets. In comparison to existing methods, it achieves an accuracy improvement of 3.15% and 1.52%, respectively, as well as a specificity improvement of 4.72% and 0.91%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老王完成签到,获得积分10
刚刚
4秒前
5秒前
无限的忆山完成签到 ,获得积分10
5秒前
嘞是举仔完成签到,获得积分10
5秒前
满意的大碗完成签到,获得积分20
7秒前
shann完成签到,获得积分10
8秒前
LH完成签到,获得积分10
8秒前
8秒前
嘞是举仔发布了新的文献求助30
9秒前
9秒前
syl发布了新的文献求助10
10秒前
李爱国应助无不破哉采纳,获得10
12秒前
12秒前
坚定的泥猴桃完成签到 ,获得积分10
12秒前
yw完成签到,获得积分10
12秒前
14秒前
15秒前
LLL发布了新的文献求助10
16秒前
17秒前
852应助青蛙的第二滴口水采纳,获得10
19秒前
leo完成签到,获得积分10
19秒前
顾矜应助火星上的初柔采纳,获得10
22秒前
ly完成签到 ,获得积分10
22秒前
22秒前
可爱的函函应助阿莫仙采纳,获得10
23秒前
deluohaida发布了新的文献求助10
23秒前
Try完成签到,获得积分10
24秒前
科研通AI5应助现代的依凝采纳,获得10
24秒前
24秒前
25秒前
Summer发布了新的文献求助10
25秒前
25秒前
小甜甜完成签到,获得积分10
26秒前
syl完成签到,获得积分10
26秒前
ArielXu应助Singularity采纳,获得10
26秒前
27秒前
27秒前
dagejing4055发布了新的文献求助10
28秒前
星辰大海应助lmz采纳,获得10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599