Automated hepatic steatosis assessment on dual-energy CT-derived virtual non-contrast images through fully-automated 3D organ segmentation

脂肪变性 接收机工作特性 核医学 磁共振成像 组内相关 医学 放射科 内科学 临床心理学 心理测量学
作者
Sun Kyung Jeon,Ijin Joo,Ijin Joo,Ijin Joo
出处
期刊:Radiologia Medica [Springer Science+Business Media]
标识
DOI:10.1007/s11547-024-01833-8
摘要

Abstract Purpose To evaluate the efficacy of volumetric CT attenuation-based parameters obtained through automated 3D organ segmentation on virtual non-contrast (VNC) images from dual-energy CT (DECT) for assessing hepatic steatosis. Materials and methods This retrospective study included living liver donor candidates having liver DECT and MRI-determined proton density fat fraction (PDFF) assessments. Employing a 3D deep learning algorithm, the liver and spleen were automatically segmented from VNC images (derived from contrast-enhanced DECT scans) and true non-contrast (TNC) images, respectively. Mean volumetric CT attenuation values of each segmented liver (L) and spleen (S) were measured, allowing for liver attenuation index (LAI) calculation, defined as L minus S. Agreements of VNC and TNC parameters for hepatic steatosis, i.e., L and LAI, were assessed using intraclass correlation coefficients (ICC). Correlations between VNC parameters and MRI-PDFF values were assessed using the Pearson’s correlation coefficient. Their performance to identify MRI-PDFF ≥ 5% and ≥ 10% was evaluated using receiver operating characteristic (ROC) curve analysis. Results Of 252 participants, 56 (22.2%) and 16 (6.3%) had hepatic steatosis with MRI-PDFF ≥ 5% and ≥ 10%, respectively. L VNC and LAI VNC showed excellent agreement with L TNC and LAI TNC (ICC = 0.957 and 0.968) and significant correlations with MRI-PDFF values (r = − 0.585 and − 0.588, Ps < 0.001). L VNC and LAI VNC exhibited areas under the ROC curve of 0.795 and 0.806 for MRI-PDFF ≥ 5%; and 0.916 and 0.932, for MRI-PDFF ≥ 10%, respectively. Conclusion Volumetric CT attenuation-based parameters from VNC images generated by DECT, via automated 3D segmentation of the liver and spleen, have potential for opportunistic hepatic steatosis screening, as an alternative to TNC images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关天木发布了新的文献求助30
2秒前
sunsun10086完成签到 ,获得积分10
2秒前
科研执修完成签到,获得积分10
3秒前
6秒前
长风完成签到,获得积分10
6秒前
HJJHJH发布了新的文献求助30
7秒前
lym97完成签到 ,获得积分10
8秒前
一颗红葡萄完成签到 ,获得积分10
10秒前
alice发布了新的文献求助100
10秒前
11秒前
动漫大师发布了新的文献求助10
11秒前
巴拉巴拉巴拉拉应助HJJHJH采纳,获得10
11秒前
12秒前
Mottri完成签到 ,获得积分10
12秒前
董昌铭完成签到 ,获得积分20
13秒前
pluto应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得30
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
14秒前
wy.he应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
14秒前
alice完成签到,获得积分10
17秒前
无涯发布了新的文献求助30
17秒前
gww完成签到,获得积分10
18秒前
22秒前
Becky完成签到 ,获得积分10
25秒前
mingtian完成签到,获得积分10
25秒前
s1ght发布了新的文献求助10
27秒前
Ccc发布了新的文献求助10
31秒前
科研通AI5应助s1ght采纳,获得30
31秒前
苏洛完成签到,获得积分10
33秒前
无涯完成签到,获得积分20
35秒前
35秒前
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779649
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221379
捐赠科研通 3040230
什么是DOI,文献DOI怎么找? 1668691
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535