A video object detector with Spatio-Temporal Attention Module for micro UAV detection

计算机科学 人工智能 探测器 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信
作者
Hao Xu,Zhigang Ling,Xiaofang Yuan,Yaonan Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:: 127973-127973
标识
DOI:10.1016/j.neucom.2024.127973
摘要

Many deep neural network-based methods have recently been proposed for object detection due to the significant success of deep learning in computer vision. However, existing object detection methods typically extract the appearance features of objects from single image so that they usually suffer from poor performance in detecting micro Unmanned Aerial Vehicle (UAV), because micro UAV lacks of rich color, shape and texture information. To address this issue, we introduce the temporal information of objects from videos and develop a Spatio-Temporal Attention Module (STAM) to efficiently enhance feature map extraction for detecting micro UAV, and then integrate STAM into YOLOX to develop a video object detector for micro UAV. Meanwhile, we propose a lightweight Spatial Pyramid Pooling (SPP) module termed Group Simplified Spatial Pyramid Pooling-Fast with Cross Stage Partial (Group SimSPPFCSP) for the backbone's final stage layer to efficiently and lightly extract more semantic information, and we propose a neck with rich propagation pathways (NRPP) to facilitate the effective propagation of spatial and temporal information across different levels. Furthermore, we propose two data augmentation operations including SeqMosaic and SeqMixUp, to augment video data for video object detection. Experimental results show that our model can achieve competitive precision (with 5.0 mAP and 8.1 mAPSmall improvement) while maintaining real-time inference speed (35.3 fps).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酥酥完成签到,获得积分10
1秒前
Hao发布了新的文献求助10
1秒前
无心的闭月完成签到,获得积分10
1秒前
雪白起眸发布了新的文献求助10
2秒前
xiao123789发布了新的文献求助10
2秒前
叶叶叶完成签到,获得积分10
2秒前
LHW完成签到,获得积分10
2秒前
2秒前
我是老大应助筱煜采纳,获得10
2秒前
田様应助摆渡人采纳,获得10
2秒前
奶茶菌发布了新的文献求助10
3秒前
3秒前
3秒前
LL发布了新的文献求助10
3秒前
科研通AI5应助傢誠采纳,获得10
4秒前
able完成签到 ,获得积分10
4秒前
4秒前
啦啦啦啦完成签到,获得积分20
5秒前
花生了什么树完成签到,获得积分10
7秒前
赘婿应助yeah采纳,获得10
7秒前
整齐醉冬发布了新的文献求助10
7秒前
WxChen发布了新的文献求助10
7秒前
甜甜宛海发布了新的文献求助10
7秒前
7秒前
8秒前
郭宇发布了新的文献求助10
8秒前
子南发布了新的文献求助30
9秒前
1111发布了新的文献求助10
9秒前
科研通AI2S应助木木采纳,获得10
10秒前
10秒前
大个应助喻踏歌采纳,获得10
10秒前
11秒前
11秒前
12秒前
NexusExplorer应助肖耶啵采纳,获得10
12秒前
NexusExplorer应助研友_yLpYkn采纳,获得30
12秒前
13秒前
13秒前
嵇灵竹完成签到,获得积分10
13秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813459
求助须知:如何正确求助?哪些是违规求助? 3357801
关于积分的说明 10388583
捐赠科研通 3075042
什么是DOI,文献DOI怎么找? 1689136
邀请新用户注册赠送积分活动 812578
科研通“疑难数据库(出版商)”最低求助积分说明 767210