异步通信
人工神经网络
马尔可夫过程
边界(拓扑)
模式(计算机接口)
计算机科学
扩散
随机神经网络
统计物理学
控制理论(社会学)
生物系统
循环神经网络
数学
物理
人工智能
计算机网络
数学分析
量子力学
统计
操作系统
生物
控制(管理)
作者
Xin‐Xin Han,Kai‐Ning Wu,Xin Yuan
标识
DOI:10.1109/tnnls.2025.3574214
摘要
This article tackles asynchronous control issue for a class of stochastic Markovian reaction-diffusion neural networks with mode-dependent delays (MDDs). Taking into account the spatio-temporal distribution of such networks, we propose a boundary control (BC) scheme combined with asynchronous control to reduce control implementation cost and overcome environmental constraint. By incorporating a hidden Markov model to manage the mode asynchrony, we develop an integral asynchronous boundary controller for Neumann boundary conditions, as well as an innovative one for Dirichlet boundary conditions. We then derive an exponential stability criterion specific to MDDs and introduce a novel asynchronous BC synthesis approach. Additionally, we extend our findings to the leader-follower synchronization of these neural networks. The validity, superiority, and practicality of the proposed control design approach are demonstrated via three numerical examples, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI