Machine Learning-Enabled Discovery of IonicLiquid-Solvent Electrolytes Exhibiting HighIonic Conductivity

作者
Masrur Ahmed,Jindal K. Shah
标识
DOI:10.26434/chemrxiv-2025-mws05
摘要

Ionic Liquids (IL), which are a class of materials with versatile nature and growing popularity are facing impediments toward wide-spread usage as electrolytes due to various factors such as low ionic conductivity, high viscosity, high market price etc. One of the ways these limitations can be addressed is by mixing ILs with another solvent. In a combinatorial sense, there exists an immense number of specific IL-solvent combinations. An exhaustive experimental or even simulation based-investigation of the chemical space spanned by such combinations can be extremely time-consuming, expensive, and nearly impossible. An alternative approach is to employ machine-learning (ML) based models developed from existing databases. Although there exists prior literature that integrates machine learning to investigate mixtures of a specific solvent with ILs, these models lack generalization necessitating development of a large number of ML models to handle various solvents. To remedy this shortcoming, as a part of designing green electrolytes with high ionic conductivity that can have potential applications in next generation batteries and solar cells, this work aims to develop a unified ML model to predict ionic conductivity of any IL-solvent mixture system. In this regard, three models, namely, Random Forest, XGBoost, and Artificial Neural Network were formulated using a diverse dataset curated from the NIST ILThermo database. The dataset contained 549 unique ILs from 16 cation families, 81 unique solvents, representing a total of 23691 datapoints. SHAPLEY additive explanation (SHAP) method was used to assess the impact of various features on model prediction and their significance was compared with literature to gain physical insight about the model behavior. Finally, using the developed models approximately 2.5 million ILsolvent mixtures at five different compositions were screened at room temperature. The highthroughput screening yielded nearly 19,000 IL-solvent mixtures for which ionic conductivity was found to exceed the ionic conductivity of conventional Li-ion battery electrolyte.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLY完成签到,获得积分10
刚刚
1秒前
1秒前
英俊的铭应助阿楠采纳,获得30
2秒前
BowieHuang应助陈乙己采纳,获得10
2秒前
Slide发布了新的文献求助10
2秒前
Owen应助苹果芷天采纳,获得10
2秒前
balabala完成签到,获得积分20
2秒前
zhao发布了新的文献求助10
3秒前
3秒前
个性无剑完成签到,获得积分10
4秒前
英姑应助Crazy_Runner采纳,获得10
4秒前
4秒前
噼里啪啦完成签到 ,获得积分10
4秒前
火星上的飞丹完成签到,获得积分10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
zhangweili完成签到,获得积分10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
打打应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
鹤轩应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
6秒前
yznfly应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
balabala发布了新的文献求助10
6秒前
Orange应助xxx采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713080
求助须知:如何正确求助?哪些是违规求助? 5213364
关于积分的说明 15269379
捐赠科研通 4864862
什么是DOI,文献DOI怎么找? 2611713
邀请新用户注册赠送积分活动 1561997
关于科研通互助平台的介绍 1519171