Learning More With Less: A Generalizable, Self-Supervised Framework for Privacy-Preserving Capacity Estimation With EV Charging Data

作者
Anushiya Arunan,Yan Qin,Xiaoli Li,U-Xuan Tan,H. Vincent Poor,Chau Yuen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tii.2025.3613385
摘要

Accurate battery capacity estimation is key to alleviating consumer concerns about battery performance and reliability of electric vehicles (EVs). However, practical data limitations imposed by stringent privacy regulations and labeled data shortages hamper the development of generalizable capacity estimation models that remain robust to real-world data distribution shifts. While self-supervised learning can leverage unlabeled data, existing techniques are not particularly designed to learn effectively from challenging field data -- let alone from privacy-friendly data, which are often less feature-rich and noisier. In this work, we propose a first-of-its-kind capacity estimation model based on self-supervised pre-training, developed on a large-scale dataset of privacy-friendly charging data snippets from real-world EV operations. Our pre-training framework, snippet similarity-weighted masked input reconstruction, is designed to learn rich, generalizable representations even from less feature-rich and fragmented privacy-friendly data. Our key innovation lies in harnessing contrastive learning to first capture high-level similarities among fragmented snippets that otherwise lack meaningful context. With our snippet-wise contrastive learning and subsequent similarity-weighted masked reconstruction, we are able to learn rich representations of both granular charging patterns within individual snippets and high-level associative relationships across different snippets. Bolstered by this rich representation learning, our model consistently outperforms state-of-the-art baselines, achieving 31.9% lower test error than the best-performing benchmark, even under challenging domain-shifted settings affected by both manufacturer and age-induced distribution shifts. Source code is available at https://github.com/en-research/GenEVBattery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYL小怪兽完成签到 ,获得积分10
1秒前
2秒前
3秒前
可耐的稀完成签到,获得积分10
4秒前
英俊的铭应助知性的采珊采纳,获得10
4秒前
5秒前
小杭76应助yang采纳,获得10
6秒前
6秒前
无奈安卉完成签到,获得积分10
6秒前
风趣冬瓜发布了新的文献求助10
6秒前
7秒前
wanci应助kzf丶bryant采纳,获得10
8秒前
10秒前
离言发布了新的文献求助10
10秒前
11秒前
jjy发布了新的文献求助20
12秒前
yourenpkma123完成签到,获得积分10
13秒前
超级亿先发布了新的文献求助10
13秒前
SciGPT应助哈哈采纳,获得10
14秒前
15秒前
浮游应助从容晓凡采纳,获得10
16秒前
积极的千雁完成签到,获得积分10
17秒前
17秒前
LeezZZZ发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
20秒前
yyy完成签到,获得积分10
20秒前
彩色不斜完成签到 ,获得积分10
21秒前
爆米花应助风语村采纳,获得10
21秒前
大方元风发布了新的文献求助10
21秒前
21秒前
Gcia完成签到 ,获得积分10
22秒前
琳666发布了新的文献求助10
23秒前
仵一发布了新的文献求助10
24秒前
清爽语柳发布了新的文献求助30
24秒前
小怪兽发布了新的文献求助10
25秒前
脑洞疼应助孝顺的航空采纳,获得10
26秒前
kzf丶bryant发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312