Distributionally Robust Online Portfolio Selection with ESG Scores

选择(遗传算法) 文件夹 投资组合优化 计算机科学 业务 计量经济学 经济 人工智能 财务
作者
Sini Guo,Mengzi Yin,Hongguang Ma
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:: 1-28
标识
DOI:10.1080/24725854.2025.2561568
摘要

Online portfolio selection (OPS) is gaining increasing attention since it responds better to financial market volatility and efficiently averts investment risk through real-time updating. To alleviate the impact of financial environment uncertainty on online decision making and improve investment efficiency, we propose a novel distributionally robust online portfolio selection (DROPS) strategy by two stage optimization. In Stage 1, a sector portfolio selection is performed, considering various sectors with different financial market characteristics. Specifically, two distributionally robust Mean-CVaR models are constructed for determining the allocation weight of each sector in each month, where risk preference parameters are dynamically adjusted based on past investment performance. In Stage 2, a daily portfolio selection is conducted on individual stocks. Given that environmental, social, and governmental (ESG) factors exert an influence on returns, the daily ESG scores are first incorporated into the auto-regressive integrated moving average (ARIMA) model for boosting return prediction accuracy. The ARIMA-ESG-Cost algorithm is then proposed to update the portfolio for maximizing net returns. Numerical experiments demonstrate that the DROPS strategy achieves higher cumulative wealth and outperforms a wide range of OPS strategies on multiple composite metrics of risk and return, exhibiting strong practicability in real investment activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜怀绿完成签到,获得积分10
刚刚
莫道桑榆完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
深情安青应助猪猪hero采纳,获得10
1秒前
不摇头的向日葵完成签到 ,获得积分10
2秒前
yangzhang发布了新的文献求助10
2秒前
感动清炎完成签到,获得积分10
3秒前
4秒前
4秒前
深情安青应助zjujirenjie采纳,获得10
5秒前
5秒前
6秒前
7秒前
荔枝完成签到,获得积分10
7秒前
小西完成签到,获得积分10
8秒前
wyn完成签到,获得积分10
8秒前
坏坏的快乐完成签到,获得积分10
8秒前
理想三寻完成签到,获得积分10
9秒前
我不是笨蛋完成签到,获得积分10
9秒前
10秒前
呆萌安萱发布了新的文献求助10
11秒前
彭于晏应助deway采纳,获得10
12秒前
12秒前
12秒前
浮游应助雨霖铃采纳,获得10
13秒前
LJJ完成签到 ,获得积分10
14秒前
安静严青完成签到 ,获得积分10
15秒前
15秒前
15秒前
深情安青应助衔尾蛇采纳,获得10
16秒前
美丽芷容发布了新的文献求助20
16秒前
yar完成签到 ,获得积分10
18秒前
猪猪hero发布了新的文献求助10
18秒前
酷波er应助整齐的未来采纳,获得10
18秒前
小谭完成签到 ,获得积分10
19秒前
19秒前
19秒前
将妄发布了新的文献求助10
19秒前
cllg发布了新的文献求助10
20秒前
淡然柚子完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919163
求助须知:如何正确求助?哪些是违规求助? 4191236
关于积分的说明 13016594
捐赠科研通 3961543
什么是DOI,文献DOI怎么找? 2171711
邀请新用户注册赠送积分活动 1189660
关于科研通互助平台的介绍 1098275