Machine Learning in Fluid Dynamics—Physics-Informed Neural Networks (PINNs) Using Sparse Data: A Review

人工神经网络 计算机科学 人工智能 动力学(音乐) 数据科学 机器学习 物理 声学
作者
Mouhammad El Hassan,Ali Mjalled,Philippe Miron,Martin Mönnigmann,Nikolay Bukharin
出处
期刊:Fluids [MDPI AG]
卷期号:10 (9): 226-226 被引量:4
标识
DOI:10.3390/fluids10090226
摘要

Fluid mechanics often involves complex systems characterized by a large number of physical parameters, which are usually described by experimental and numerical sparse data (temporal or spatial). The difficulty of obtaining complete spatio-temporal datasets is a common issue with conventional approaches, such as computational fluid dynamics (CFDs) and various experimental methods, particularly when evaluating and modeling turbulent flows. This review paper focuses on the integration of machine learning (ML), specifically physics-informed neural networks (PINNs), as a means to address this challenge. By directly incorporating governing physical equations into neural network training, PINNs present a novel method that allows for the reconstruction of flow from sparse and noisy data. This review examines various applications in fluid mechanics where sparse data is a common problem and evaluates the effectiveness of PINNs in enhancing flow prediction accuracy. An overview of diverse PINNs methods, their applications, and outcomes is discussed, demonstrating their flexibility and effectiveness in addressing challenges related to sparse data and illustrating that the future of fluid mechanics lies in the synergy between data-driven approaches and established physical theories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
寻道图强应助EnboFan采纳,获得100
刚刚
花无双完成签到,获得积分0
1秒前
3秒前
小马甲应助摆渡人采纳,获得10
3秒前
邹雄辉发布了新的文献求助10
4秒前
6秒前
grape_220a关注了科研通微信公众号
6秒前
迷路啤酒发布了新的文献求助10
7秒前
俏皮大树发布了新的文献求助10
8秒前
红豆子完成签到,获得积分10
8秒前
无极微光应助ananan采纳,获得20
9秒前
独特的秋发布了新的文献求助10
9秒前
沉静樱桃完成签到,获得积分10
10秒前
10秒前
肥肥菲发布了新的文献求助10
10秒前
烟花应助roy采纳,获得10
11秒前
知常完成签到,获得积分10
11秒前
小陈同学应助倒头就睡采纳,获得10
12秒前
MWY完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
快乐的贵完成签到,获得积分20
14秒前
爆米花应助《子非鱼》采纳,获得10
14秒前
情怀应助浮浮世世采纳,获得10
15秒前
Mic应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
Mic应助科研通管家采纳,获得10
15秒前
Return应助科研通管家采纳,获得10
16秒前
Axs发布了新的文献求助30
16秒前
浮游应助科研通管家采纳,获得10
16秒前
蓝天应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
Mic应助科研通管家采纳,获得10
16秒前
Mic应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
Mic应助科研通管家采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167