Machine learning for dynamic and early prediction of acute kidney injury after cardiac surgery

医学 急性肾损伤 四分位间距 接收机工作特性 肾脏疾病 重症监护室 肌酐 曲线下面积 重症监护 阶段(地层学) 内科学 急诊医学 重症监护医学 生物 古生物学
作者
Christopher T. Ryan,Zijian Zeng,Subhasis Chatterjee,Matthew J. Wall,Marc R. Moon,Joseph S. Coselli,Todd K. Rosengart,Meng Li,Ravi K. Ghanta
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:166 (6): e551-e564 被引量:10
标识
DOI:10.1016/j.jtcvs.2022.09.045
摘要

Objective Acute kidney injury after cardiac surgery increases morbidity and mortality. Diagnosis relies on oliguria or increased serum creatinine, which develop 48 to 72 hours after injury. We hypothesized machine learning incorporating preoperative, operative, and intensive care unit data could dynamically predict acute kidney injury before conventional identification. Methods Cardiac surgery patients at a tertiary hospital (2008-2019) were identified using electronic medical records in the Medical Information Mart for Intensive Care IV database. Preoperative and intraoperative parameters included demographics, Charlson Comorbidity subcategories, and operative details. Intensive care unit data included hemodynamics, medications, fluid intake/output, and laboratory results. Kidney Disease: Improving Global Outcomes creatinine criteria were used for acute kidney injury diagnosis. An ensemble machine learning model was trained for hourly predictions of future acute kidney injury within 48 hours. Performance was evaluated by area under the receiver operating characteristic curve and balanced accuracy. Results Within the cohort (n = 4267), there were approximately 7 million data points. Median baseline creatinine was 1.0 g/dL (interquartile range, 0.8-1.2), with 17% (735/4267) of patients having chronic kidney disease. Postoperative stage 1 acute kidney injury occurred in 50% (2129/4267), stage 2 occurred in 8% (324/4267), and stage 3 occurred in 4% (183/4267). For hourly prediction of any acute kidney injury over the next 48 hours, area under the receiver operating characteristic curve was 0.82, and balanced accuracy was 75%. For hourly prediction of stage 2 or greater acute kidney injury over the next 48 hours, area under the receiver operating characteristic curve was 0.95 and balanced accuracy was 86%. The model predicted acute kidney injury before clinical detection in 89% of cases. Conclusions Ensemble machine learning models using electronic medical records data can dynamically predict acute kidney injury risk after cardiac surgery. Continuous postoperative risk assessment could facilitate interventions to limit or prevent renal injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助自觉寒梦采纳,获得10
刚刚
KPL452B发布了新的文献求助10
刚刚
duan发布了新的文献求助10
刚刚
牛奶牛奶完成签到,获得积分10
1秒前
1秒前
小小完成签到 ,获得积分10
1秒前
2秒前
2秒前
changyouhuang完成签到,获得积分10
2秒前
康K发布了新的文献求助10
2秒前
junru完成签到,获得积分20
2秒前
2秒前
脑袋空空完成签到 ,获得积分10
3秒前
Derek0203完成签到,获得积分10
3秒前
NexusExplorer应助Lily采纳,获得10
3秒前
华北走地鸡完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Mila完成签到,获得积分10
5秒前
Xxjj完成签到,获得积分10
5秒前
水刃木完成签到,获得积分10
5秒前
苗苗完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
烤红薯发布了新的文献求助10
6秒前
6秒前
栗爷完成签到,获得积分10
6秒前
浮游应助机灵水卉采纳,获得10
6秒前
7秒前
7秒前
海阔天空发布了新的文献求助10
7秒前
keyan学渣发布了新的文献求助10
7秒前
8秒前
8秒前
小星星完成签到 ,获得积分10
8秒前
Owen应助朝阳采纳,获得10
9秒前
青柠味薯片完成签到,获得积分10
9秒前
9秒前
潘杰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482901
求助须知:如何正确求助?哪些是违规求助? 4583628
关于积分的说明 14391412
捐赠科研通 4513097
什么是DOI,文献DOI怎么找? 2473334
邀请新用户注册赠送积分活动 1459351
关于科研通互助平台的介绍 1432939