Machine learning for dynamic and early prediction of acute kidney injury after cardiac surgery

医学 急性肾损伤 四分位间距 接收机工作特性 肾脏疾病 重症监护室 肌酐 曲线下面积 重症监护 阶段(地层学) 内科学 急诊医学 重症监护医学 生物 古生物学
作者
Christopher T. Ryan,Zijian Zeng,Subhasis Chatterjee,Matthew J. Wall,Marc R. Moon,Joseph S. Coselli,Todd K. Rosengart,Meng Li,Ravi K. Ghanta
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
卷期号:166 (6): e551-e564 被引量:10
标识
DOI:10.1016/j.jtcvs.2022.09.045
摘要

Objective Acute kidney injury after cardiac surgery increases morbidity and mortality. Diagnosis relies on oliguria or increased serum creatinine, which develop 48 to 72 hours after injury. We hypothesized machine learning incorporating preoperative, operative, and intensive care unit data could dynamically predict acute kidney injury before conventional identification. Methods Cardiac surgery patients at a tertiary hospital (2008-2019) were identified using electronic medical records in the Medical Information Mart for Intensive Care IV database. Preoperative and intraoperative parameters included demographics, Charlson Comorbidity subcategories, and operative details. Intensive care unit data included hemodynamics, medications, fluid intake/output, and laboratory results. Kidney Disease: Improving Global Outcomes creatinine criteria were used for acute kidney injury diagnosis. An ensemble machine learning model was trained for hourly predictions of future acute kidney injury within 48 hours. Performance was evaluated by area under the receiver operating characteristic curve and balanced accuracy. Results Within the cohort (n = 4267), there were approximately 7 million data points. Median baseline creatinine was 1.0 g/dL (interquartile range, 0.8-1.2), with 17% (735/4267) of patients having chronic kidney disease. Postoperative stage 1 acute kidney injury occurred in 50% (2129/4267), stage 2 occurred in 8% (324/4267), and stage 3 occurred in 4% (183/4267). For hourly prediction of any acute kidney injury over the next 48 hours, area under the receiver operating characteristic curve was 0.82, and balanced accuracy was 75%. For hourly prediction of stage 2 or greater acute kidney injury over the next 48 hours, area under the receiver operating characteristic curve was 0.95 and balanced accuracy was 86%. The model predicted acute kidney injury before clinical detection in 89% of cases. Conclusions Ensemble machine learning models using electronic medical records data can dynamically predict acute kidney injury risk after cardiac surgery. Continuous postoperative risk assessment could facilitate interventions to limit or prevent renal injury.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
田様应助小乔采纳,获得10
刚刚
静静地行走完成签到,获得积分10
刚刚
1秒前
SY发布了新的文献求助10
1秒前
忧郁的寻冬完成签到,获得积分10
1秒前
1秒前
2秒前
4秒前
hongxian完成签到,获得积分10
4秒前
erji完成签到 ,获得积分20
4秒前
yulin发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
5秒前
xu发布了新的文献求助10
5秒前
FashionBoy应助像鱼采纳,获得10
6秒前
郑建星完成签到,获得积分20
7秒前
Silverexile发布了新的文献求助30
7秒前
刘秋伶应助静静地行走采纳,获得10
8秒前
小鹿乱撞发布了新的文献求助10
8秒前
8秒前
鲨鱼辣椒发布了新的文献求助10
9秒前
NexusExplorer应助swan采纳,获得10
9秒前
Longfei完成签到,获得积分20
9秒前
9秒前
科研通AI6应助勤恳慕灵采纳,获得10
9秒前
不许动完成签到 ,获得积分10
9秒前
10秒前
玺青一生完成签到 ,获得积分10
10秒前
勤恳凡之发布了新的文献求助10
10秒前
刘十一完成签到 ,获得积分10
10秒前
脑洞疼应助RC_Wang采纳,获得10
11秒前
sarah发布了新的文献求助10
11秒前
蜜雪冰城完成签到,获得积分10
12秒前
13秒前
邓倩完成签到,获得积分10
14秒前
14秒前
小鸭子发布了新的文献求助10
14秒前
吸尘器完成签到,获得积分10
14秒前
张张完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497239
求助须知:如何正确求助?哪些是违规求助? 4594744
关于积分的说明 14446447
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480884
邀请新用户注册赠送积分活动 1465248
关于科研通互助平台的介绍 1437903