Improvement of ultrasound-assisted extraction of polyphenolic content of the plant Cytisus triflorus L'Her as a natural resource using artificial neural network modeling and multi-objective optimization

萃取(化学) 多酚 人工神经网络 生物系统 计算机科学 色谱法 化学 人工智能 生物化学 生物 抗氧化剂
作者
Yousra Touami,Rafik Marir,Fateh Merouane
出处
期刊:Sustainable Chemistry and Pharmacy [Elsevier]
卷期号:32: 101032-101032 被引量:10
标识
DOI:10.1016/j.scp.2023.101032
摘要

The improvement of environmental performance of production processes is a critical problem right now. Processes that are effective in terms of productivity and environmental effects are the center of interest of researchers. This study established such a method for an ultrasound-assisted extraction procedure. The plant Cytisus triflorus L'Her was used to extract polyphenolic chemicals using ultrasound-assisted extraction as a quick, less energy consuming, high-yield technology. This work offers a new experimental planning approach using Artificial Neural Networks, that enables the extraction process to be optimized using multi-objective optimization in order to identify the best extraction conditions to obtain the maximum polyphenolic compounds possible. Advanced modeling using Artificial intelligence and statistical optimization techniques was used to determine the best combinations of ethanol concentration, extraction temperature and time for the maximum extraction of total phenols, total flavonoids, total flavonols, and total tannins. An artificial neural network (ANN) was used to build the models for each of the four goals, then they were multi-objectively optimized using a genetic algorithm technique. The maximum polyphenolic contents including TPC (4.986 ± 0.006 mg GA/g DE), TFC (14.026 ± 0.070 mg Q/g DE), TFolC (5.225 ± 0.010 mg R/g DE), and TTC (6.240 ± 0.021 mg C/g DE) were obtained using an extraction process under optimal conditions, which included a solvent concentration of 78%, an extraction temperature of 52 °C, and an extraction time of 55 min which were obtained using the MOO Pareto optimum solution selection approach Gray Relational Analysis GRA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sevenhill应助洁净的半鬼采纳,获得10
1秒前
1秒前
1秒前
隐形曼青应助早早采纳,获得10
4秒前
李健的小迷弟应助早早采纳,获得10
4秒前
12发布了新的文献求助20
4秒前
shuan完成签到,获得积分10
5秒前
科研通AI6应助柯林采纳,获得10
5秒前
寒冷冰香完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
子车茗应助七QI采纳,获得30
8秒前
斯文慕山完成签到,获得积分10
9秒前
研友_VZG7GZ应助陈含章采纳,获得10
11秒前
852应助di采纳,获得10
11秒前
12秒前
12秒前
13秒前
陈含章完成签到,获得积分20
14秒前
Zfy完成签到 ,获得积分10
15秒前
科研通AI6应助夏子采纳,获得10
15秒前
浮游应助哈哈哈采纳,获得10
16秒前
16秒前
撒野完成签到,获得积分10
16秒前
季瑶完成签到 ,获得积分10
19秒前
sia发布了新的文献求助30
19秒前
晨晨晨发布了新的文献求助10
20秒前
21秒前
iris发布了新的文献求助10
22秒前
科研通AI6应助几十只瑞采纳,获得10
23秒前
23秒前
花无缺完成签到,获得积分20
24秒前
陈含章发布了新的文献求助10
25秒前
25秒前
SciGPT应助max采纳,获得10
26秒前
26秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553546
求助须知:如何正确求助?哪些是违规求助? 4638065
关于积分的说明 14652063
捐赠科研通 4579957
什么是DOI,文献DOI怎么找? 2512001
邀请新用户注册赠送积分活动 1486901
关于科研通互助平台的介绍 1457772