Diffusion-Weighted Imaging as a Quantitative Imaging Biomarker for Predicting Proliferation Rate in Hepatocellular Carcinoma: Developing a Radiomics Nomogram

医学 列线图 肝细胞癌 有效扩散系数 磁共振弥散成像 无线电技术 生物标志物 成像生物标志物 磁共振成像 曲线下面积 核医学 放射科 回顾性队列研究 肿瘤科 病理 内科学 化学 生物化学
作者
Guangdong Bai,Zewen Han,Xiaojie Chen,Lanmei Gao,Rongping Ye,Yueming Li
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (4): 539-547 被引量:1
标识
DOI:10.1097/rct.0000000000001448
摘要

Purpose This study aimed to explore the predictive performance of diffusion-weighted imaging with apparent diffusion coefficient map in predicting the proliferation rate of hepatocellular carcinoma and to develop a radiomics-based nomogram. Methods This was a single-center retrospective study. A total of 110 patients were enrolled. The sample included 38 patients with low Ki67 expression (Ki67 ≤10%) and 72 with high Ki67 expression (Ki67 >10%) as demonstrated by surgical pathology. Patients were randomly divided into either a training (n = 77) or validation (n = 33) cohort. Diffusion-weighted imaging with apparent diffusion coefficient maps was used to extract radiomic features and the signal intensity values of tumor (SI tumor ), normal liver (SI liver ), and background noise (SI background ) from all samples. Subsequently, the clinical model, radiomic model, and fusion model (with clinical data and radiomic signature) were developed and validated. Results The area under the curve (AUC) of the clinical model for predicting the Ki67 expression including serum α-fetoprotein level ( P = 0.010), age ( P = 0.015), and signal noise ratio ( P = 0.026) was 0.799 and 0.715 in training and validation cohorts, respectively. The AUC of the radiomic model constructed by 9 selected radiomic features was 0.833 and 0.772 in training and validation cohorts, respectively. The AUC of the fusion model containing serum α-fetoprotein level ( P = 0.011), age ( P = 0.019), and rad score ( P < 0.001) was 0.901 and 0.781 in training and validation cohorts, respectively. Conclusions Diffusion-weighted imaging as a quantitative imaging biomarker can predict Ki67 expression level in hepatocellular carcinoma across various models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z1022yh完成签到 ,获得积分10
1秒前
CodeCraft应助99采纳,获得10
1秒前
潘甜甜发布了新的文献求助10
1秒前
1秒前
ddj完成签到 ,获得积分10
2秒前
2秒前
完美世界应助胡杨采纳,获得10
2秒前
3秒前
吴硫发布了新的文献求助10
3秒前
太吾墨完成签到,获得积分10
4秒前
4秒前
搜集达人应助猪猪hero采纳,获得10
4秒前
5秒前
5秒前
星辰大海应助zgnb采纳,获得10
5秒前
cc发布了新的文献求助20
5秒前
7秒前
zhangzhang发布了新的文献求助10
8秒前
9秒前
科研通AI5应助小熊枕头采纳,获得10
9秒前
yyc666发布了新的文献求助10
9秒前
刻苦秋烟发布了新的文献求助10
9秒前
南风平发布了新的文献求助10
10秒前
11秒前
11秒前
梦鱼完成签到,获得积分10
12秒前
天天快乐应助euphoria采纳,获得10
12秒前
zys完成签到,获得积分10
12秒前
张牧之完成签到 ,获得积分10
12秒前
默默的天亦完成签到,获得积分10
13秒前
cwq完成签到 ,获得积分10
13秒前
幸运星完成签到 ,获得积分10
13秒前
天天快乐应助Jro采纳,获得10
13秒前
14秒前
发嗲的炳发布了新的文献求助10
14秒前
15秒前
二零三完成签到,获得积分20
15秒前
16秒前
可可应助fzzf采纳,获得10
16秒前
优秀的鹤轩完成签到,获得积分10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820678
求助须知:如何正确求助?哪些是违规求助? 3363573
关于积分的说明 10423756
捐赠科研通 3081991
什么是DOI,文献DOI怎么找? 1695386
邀请新用户注册赠送积分活动 815069
科研通“疑难数据库(出版商)”最低求助积分说明 768856