杠杆(统计)
多基因风险评分
遗传建筑学
可转让性
特质
数量性状位点
水准点(测量)
计算机科学
人口
计算生物学
医学
机器学习
生物
遗传学
基因
地理
地图学
单核苷酸多态性
基因型
罗伊特
程序设计语言
环境卫生
作者
Buu Truong,Leland E. Hull,Yunfeng Ruan,Qin Qin Huang,Whitney Hornsby,Hilary C Martin,David A. van Heel,Ying Wang,Alicia R Martin,Hong Lee,Pradeep Natarajan
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
日期:2023-02-26
标识
DOI:10.1101/2023.02.21.23286110
摘要
Polygenic risk scores (PRS) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. Validation and transferability of existing PRS across independent datasets and diverse ancestries are limited, which hinders the practical utility and exacerbates health disparities. We propose PRSmix, a framework that evaluates and leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture. We applied PRSmix to 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.23-fold (95% CI: [1.18; 1.29]; P-value < 2 × 10 -16 ) and 1.19-fold (95% CI: [1.11; 1.27]; P-value = 3.94 × 10 -6 ), and PRSmix+ improved the prediction accuracy by 1.71-fold (95% CI: [1.48; 1.94]; P-value = 9.98 × 10 -10 ) and 1.41-fold (95% CI: [1.24; 1.58]; P-value = 2.51 × 10 -6 ) in European and South Asian ancestries, respectively. Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.
科研通智能强力驱动
Strongly Powered by AbleSci AI