Neural 3D Scene Reconstruction with Indoor Planar Priors

计算机科学 人工智能 计算机视觉 先验概率 迭代重建 模式识别(心理学) 人工神经网络 贝叶斯概率
作者
Xiaowei Zhou,Haoyu Guo,Sida Peng,Yuxi Xiao,Haotong Lin,Qianqian Wang,Guofeng Zhang,Hujun Bao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (9): 6355-6366
标识
DOI:10.1109/tpami.2024.3379833
摘要

This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images. Many previous works have shown impressive reconstruction results on textured objects, but they still have difficulty in handling low-textured planar regions, which are common in indoor scenes. An approach to solving this issue is to incorporate planar constraints into the depth map estimation in multi-view stereo-based methods, but the per-view plane estimation and depth optimization lack both efficiency and multi-view consistency. In this work, we show that the planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods. Specifically, we use an MLP network to represent the signed distance function as the scene geometry. Based on the Manhattan-world assumption and the Atlanta-world assumption, planar constraints are employed to regularize the geometry in floor and wall regions predicted by a 2D semantic segmentation network. To resolve the inaccurate segmentation, we encode the semantics of 3D points with another MLP and design a novel loss that jointly optimizes the scene geometry and semantics in 3D space. Experiments on ScanNet and 7-Scenes datasets show that the proposed method outperforms previous methods by a large margin on 3D reconstruction quality. The code and supplementary materials are available at https://zju3dv.github.io/ manhattan sdf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
科研通AI5应助摸摸采纳,获得10
1秒前
1秒前
桐桐应助www采纳,获得10
1秒前
陈霸下。发布了新的文献求助20
2秒前
2秒前
pluto应助好旺采纳,获得10
4秒前
5秒前
qhy完成签到,获得积分20
6秒前
勤劳飞松完成签到,获得积分10
6秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
zoro应助科研通管家采纳,获得10
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助陈霸下。采纳,获得10
11秒前
领导范儿应助无奈的萍采纳,获得10
12秒前
12秒前
13秒前
小瞎子_Zora完成签到 ,获得积分10
13秒前
风中凡白发布了新的文献求助10
14秒前
月轩姐姐完成签到,获得积分10
15秒前
摸摸发布了新的文献求助10
15秒前
vicky完成签到,获得积分10
15秒前
16秒前
17秒前
sunday2024发布了新的文献求助200
17秒前
陈霸下。完成签到,获得积分10
20秒前
扶手完成签到 ,获得积分10
20秒前
米米米发布了新的文献求助10
21秒前
kuyi完成签到 ,获得积分10
23秒前
cdercder应助Krositon采纳,获得10
24秒前
研友_VZG7GZ应助cc采纳,获得10
24秒前
blue完成签到 ,获得积分10
25秒前
su完成签到,获得积分10
26秒前
善学以致用应助米米米采纳,获得10
28秒前
在水一方应助fbbggb采纳,获得10
29秒前
tree完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139