计算机科学
脑电图
节点(物理)
接口(物质)
脑-机接口
扩散
卷积神经网络
磁共振弥散成像
人工智能
模式识别(心理学)
磁共振成像
医学
神经科学
心理学
并行计算
工程类
物理
结构工程
气泡
放射科
最大气泡压力法
热力学
作者
Wentao Huang,Xinyue Song,Dongyang Kuang
标识
DOI:10.1109/bci60775.2024.10480493
摘要
In this work, we propose a lightweight Hierarchical Node-wise Localized Diffusion-Convolutional Network (HNLDCNet) for motor imagery (MI) and mental arithmetic (MA) classification tasks based on EEG-fNIRS data. The proposed HNLDCNet utilizes a layer-adaptive agglomerative clustering algorithm to construct a graph hierarchy of spatial information from EEG-fNIRS channels, enhancing the spatial feature extraction of EEG-fNIRS signals. By incorporating the philosophy of node-wise localized feature mapping and DiffPooling, we employ a learnable directed graph structure for efficient message passing between nodes. Different from undirected graph neural networks, HNLDCNet captures the effective connectivity, improving the extraction of discriminative information. In subject-dependent experiments, HNLDCNet achieves mean accuracies of 98.87% and 99.11% for MI and MA, respectively. Additionally, we provide visualizations to enhance the interpretability of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI