Series AC Arc Fault Detection Method Based on L2/L1 Norm and Classification Algorithm

算法 系列(地层学) 规范(哲学) 计算机科学 故障检测与隔离 弧(几何) 数学 人工智能 地质学 执行机构 古生物学 几何学 政治学 法学
作者
Wenxin Dai,Xue Zhou,Zhigang Sun,Qiang Miao,Guofu Zhai
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (10): 16661-16672 被引量:2
标识
DOI:10.1109/jsen.2024.3386694
摘要

A series arc fault can easily ignite surrounding flammable objects, leading to safety hazards. Therefore, accurately detecting the arc fault is essential. However, the fault characteristic information carried by the current when series arc faults occur is easily masked by the so-called screening load. As a result, series arc faults are not easily detected. To address this problem, this paper proposes an arc fault detection model based on L2/L1 norm and classification algorithm. L2/L1 norm is introduced to quantify the fluctuations in the current signal when an arc fault occurs, and then combined with some commonly used time domain indexes and frequency domain indexes to extract the features of the arc fault current. Next, the extracted features are filtered to create a high-quality data set. Subsequently, a random forest model is constructed and the data set is used to train and test the model. Finally, the parameters of the random forest model are optimized using the grid search method to obtain a highly accurate arc fault detection model. The effectiveness of the introduced feature is verified using the arc fault data under different loads. Meanwhile, the proposed method is tested and compared with seven commonly used machine learning methods, which reflects the superiority and accuracy of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助QingSun1采纳,获得10
刚刚
1289436完成签到,获得积分10
1秒前
sunhealth完成签到,获得积分10
1秒前
稳重完成签到 ,获得积分10
2秒前
微笑的冰烟应助台琳玉采纳,获得10
2秒前
倦鸟归林完成签到,获得积分10
2秒前
松鼠非鼠完成签到 ,获得积分10
2秒前
呼延初瑶完成签到,获得积分10
3秒前
爱就跟我走完成签到,获得积分10
3秒前
wuzihao完成签到,获得积分10
3秒前
田様应助QINXD采纳,获得10
3秒前
hwx应助乐观寻绿采纳,获得20
3秒前
峰林完成签到,获得积分10
4秒前
Owen应助李昕玥采纳,获得10
5秒前
xjh完成签到,获得积分20
5秒前
倪斯芮完成签到,获得积分10
5秒前
闪闪落雁完成签到,获得积分10
5秒前
大模型应助愉快的花卷采纳,获得10
5秒前
倦鸟归林发布了新的文献求助10
5秒前
stultus完成签到,获得积分10
6秒前
自信鑫鹏完成签到,获得积分10
6秒前
万能图书馆应助sunhealth采纳,获得10
7秒前
8秒前
现代雁桃发布了新的文献求助10
9秒前
w11完成签到,获得积分10
9秒前
betty给betty的求助进行了留言
9秒前
华仔应助杰帅采纳,获得10
9秒前
852应助李仁采纳,获得10
10秒前
英俊的铭应助一十六采纳,获得10
10秒前
Konodioda完成签到,获得积分10
10秒前
10秒前
渣155136发布了新的文献求助10
11秒前
lying147完成签到,获得积分10
11秒前
chx2256120完成签到,获得积分10
12秒前
负责御姐完成签到,获得积分10
12秒前
13秒前
舒服的灵安完成签到 ,获得积分10
13秒前
强小强努力努力完成签到 ,获得积分10
13秒前
zhouleibio完成签到,获得积分10
14秒前
林佳一完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960