A Cost-Minimized Task Migration Assignment Mechanism in Blockchain Based Edge Computing System

计算机科学 云计算 分布式计算 边缘计算 能源消耗 延迟(音频) 计算机网络 操作系统 生态学 电信 生物
作者
B.S. Xu,Yan Jin,Lei Yu
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (1)
标识
DOI:10.2174/0126662558292891240409050246
摘要

Background: Cloud computing is usually introduced to execute computing intensive tasks for data processing and data mining. As a supplement to cloud computing, edge computing is provided as a new paradigm to effectively reduce processing latency, energy consumption cost and bandwidth consumption for time-sensitive tasks or resource-sensitive tasks. To better meet such requirements during task assignment in edge computing systems, an intelligent task migration assignment mechanism based on blockchain is proposed, which jointly considers the factors of resource allocation, resource control and credit degree. Methods: In this paper, an optimization problem is firstly constructed to minimize the total cost of completing all tasks under constraints of delay, energy consumption, communication, and credit degree. Here, the terminal node mines computing resources from edge nodes to complete task migration. An incentive method based on blockchain is provided to mobilize the activity of terminal nodes and edge nodes, and to ensure the security of the transaction during migration. The designed allocation rules ensure the fairness of rewards for successfully mining resource. To solve the optimization problem, an intelligent migration algorithm that utilizes a dual “actor-reviewer” neural network on inverse gradient update is proposed which makes the training process more stable and easier to converge. Results: Compared to the existing two benchmark mechanisms, the extensive simulation results indicate that the proposed mechanism based on neural network can converge at a faster speed and achieve the minimal total cost. Conclusion: To satisfy the requirements of delay and energy consumption for computing intensive tasks in edge computing scenarios, an intelligent, blockchain based task migration assignment mechanism with joint resource allocation and control is proposed. To realize this mechanism effectively, a dual “actor-reviewer” neural network algorithm is designed and executed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风至完成签到,获得积分10
1秒前
Owen应助找不到文献的小江采纳,获得10
2秒前
严逍遥完成签到 ,获得积分10
2秒前
选兵完成签到,获得积分10
4秒前
自觉的语海完成签到,获得积分10
4秒前
烟花应助努力的小明明采纳,获得10
5秒前
6秒前
油条完成签到,获得积分10
6秒前
8秒前
9秒前
violet_119发布了新的文献求助60
9秒前
9秒前
sixgarden完成签到,获得积分20
9秒前
小马甲应助111采纳,获得10
10秒前
晶猪噜噜完成签到,获得积分10
10秒前
12秒前
13秒前
Charles发布了新的文献求助10
13秒前
14秒前
严杰发布了新的文献求助40
15秒前
19秒前
倪倪发布了新的文献求助10
19秒前
健忘姝发布了新的文献求助10
20秒前
Melrose完成签到,获得积分10
21秒前
大个应助Captain采纳,获得10
21秒前
xt完成签到,获得积分10
22秒前
24秒前
俊逸老太应助smottom采纳,获得10
24秒前
闪闪芝麻完成签到,获得积分10
25秒前
wanci应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
脑洞疼应助科研通管家采纳,获得30
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792120
求助须知:如何正确求助?哪些是违规求助? 3336378
关于积分的说明 10280558
捐赠科研通 3052977
什么是DOI,文献DOI怎么找? 1675435
邀请新用户注册赠送积分活动 803468
科研通“疑难数据库(出版商)”最低求助积分说明 761369