Developing the Artificial Intelligence Method and System for “Multiple Diseases Holistic Differentiation” in Traditional Chinese Medicine and Its Interpretability to Clinical Decision

可解释性 人工智能 计算机科学 中医药 可靠性 机器学习 水准点(测量) 数据挖掘 医学 替代医学 病理 大地测量学 政治学 法学 地理
作者
Zhe Chen,Dong Zhang,Pengfei Nie,Genghua Fan,Zhiyuan He,Hui Wang,Chenyue Zhang,Fengwen Yang,Chunxiang Liu,Junhua Zhang
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:18 (2): e70016-e70016 被引量:1
标识
DOI:10.1111/jebm.70016
摘要

ABSTRACT Aim The development of artificial intelligence (AI) for traditional Chinese medicine (TCM) has played an important role in clinical decision‐making, mainly reflected in the intersectionality and variability of symptoms, syndromes, and patterns for TCM multiple diseases holistic differentiation (MDHD). This study aimed to develop a TCM AI method and system for clinical decisions more transparent with explainable structural framework. Methods This study developed the TCM syndrome elements integration with priori rule and deep learning (TCM‐SEI‐RD) method and TCM‐MDHD system by high‐quality expert knowledge datasets, to predict various TCM syndromes and patterns in hierarchical modules. TCM‐BERT‐CNN model fused the BERT with CNN model capture feature‐related sequence, as the benchmark model in the TCM‐SEI‐RD method, to improve the performance of predicting TCM syndrome elements. The framework of the TCM‐MDHD system involved the TCM‐SEI‐RD method and TCM “diseases—syndromes—patterns” benchmark sequences, to provide distributed results with credibility. Results For predicting results to the overall TCM syndrome elements, the TCM‐SEI‐RD achieves 95.4%, 94.43%, and 94.89% in precision, recall, and F 1 score, respectively, and 3.33%, 2.28%, and 2.81% improvement over the benchmark model. TCM‐MDHD system demonstrates credibility grading at each stage in various diseases and uses the practical example to illustrate the process of distributed decision‐making results and transparency with credibility. Conclusions Our method and system, as the general AI technologies for TCM syndromes and patterns diagnosis in multiple diseases, can provide the clinical diagnostic basis with the best performance for the TCM preparations rational use, and distribute interpretability to the clinical decision‐making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助踏实问兰采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
wsn完成签到,获得积分10
2秒前
传奇3应助Vi采纳,获得10
2秒前
wanci应助山火采纳,获得10
2秒前
青糯完成签到 ,获得积分10
2秒前
pjy发布了新的文献求助10
4秒前
英姑应助Cyuan采纳,获得10
4秒前
123456hhh完成签到,获得积分10
5秒前
5秒前
等等完成签到,获得积分10
5秒前
5秒前
5秒前
成就的寄灵完成签到 ,获得积分10
5秒前
听海与你完成签到 ,获得积分10
5秒前
6秒前
7秒前
常青完成签到,获得积分10
8秒前
dihou111发布了新的文献求助10
8秒前
求助人员发布了新的文献求助50
8秒前
wen发布了新的文献求助10
8秒前
9秒前
ding应助执玉采纳,获得10
9秒前
歪梨小羊发布了新的文献求助10
9秒前
9秒前
阿卓西完成签到,获得积分10
10秒前
11秒前
chen完成签到,获得积分20
11秒前
Marilyn发布了新的文献求助10
12秒前
菠萝吃多发布了新的文献求助10
12秒前
fxunq完成签到,获得积分10
13秒前
13秒前
悦耳的曼安完成签到,获得积分10
14秒前
Ttt发布了新的文献求助30
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
否定的否定完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766937
求助须知:如何正确求助?哪些是违规求助? 5567438
关于积分的说明 15414037
捐赠科研通 4900993
什么是DOI,文献DOI怎么找? 2636801
邀请新用户注册赠送积分活动 1584968
关于科研通互助平台的介绍 1540195