已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing the Artificial Intelligence Method and System for “Multiple Diseases Holistic Differentiation” in Traditional Chinese Medicine and Its Interpretability to Clinical Decision

可解释性 人工智能 计算机科学 中医药 可靠性 机器学习 水准点(测量) 数据挖掘 医学 替代医学 病理 大地测量学 政治学 法学 地理
作者
Zhe Chen,Dong Zhang,Pengfei Nie,Genghua Fan,Zhiyuan He,Hui Wang,Chenyue Zhang,Fengwen Yang,Chunxiang Liu,Junhua Zhang
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:18 (2)
标识
DOI:10.1111/jebm.70016
摘要

The development of artificial intelligence (AI) for traditional Chinese medicine (TCM) has played an important role in clinical decision-making, mainly reflected in the intersectionality and variability of symptoms, syndromes, and patterns for TCM multiple diseases holistic differentiation (MDHD). This study aimed to develop a TCM AI method and system for clinical decisions more transparent with explainable structural framework. This study developed the TCM syndrome elements integration with priori rule and deep learning (TCM-SEI-RD) method and TCM-MDHD system by high-quality expert knowledge datasets, to predict various TCM syndromes and patterns in hierarchical modules. TCM-BERT-CNN model fused the BERT with CNN model capture feature-related sequence, as the benchmark model in the TCM-SEI-RD method, to improve the performance of predicting TCM syndrome elements. The framework of the TCM-MDHD system involved the TCM-SEI-RD method and TCM "diseases-syndromes-patterns" benchmark sequences, to provide distributed results with credibility. For predicting results to the overall TCM syndrome elements, the TCM-SEI-RD achieves 95.4%, 94.43%, and 94.89% in precision, recall, and F1 score, respectively, and 3.33%, 2.28%, and 2.81% improvement over the benchmark model. TCM-MDHD system demonstrates credibility grading at each stage in various diseases and uses the practical example to illustrate the process of distributed decision-making results and transparency with credibility. Our method and system, as the general AI technologies for TCM syndromes and patterns diagnosis in multiple diseases, can provide the clinical diagnostic basis with the best performance for the TCM preparations rational use, and distribute interpretability to the clinical decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zsl完成签到 ,获得积分10
3秒前
3秒前
小于完成签到,获得积分10
3秒前
一一应助illiterate采纳,获得10
5秒前
5秒前
5秒前
5秒前
CodeCraft应助lvsehx采纳,获得10
9秒前
都是发布了新的文献求助10
10秒前
11秒前
aaa给aaa的求助进行了留言
12秒前
guozizi发布了新的文献求助10
12秒前
YY发布了新的文献求助10
12秒前
13秒前
汉堡包应助都是采纳,获得10
13秒前
14秒前
sarah完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
隐形曼青应助夏夏1992采纳,获得10
17秒前
井中月发布了新的文献求助20
19秒前
潦草小狗完成签到,获得积分10
19秒前
T_MC郭发布了新的文献求助10
20秒前
21秒前
Upup发布了新的文献求助30
21秒前
23秒前
天天快乐应助holi采纳,获得10
24秒前
务实锦程发布了新的文献求助10
25秒前
长山小春完成签到,获得积分10
26秒前
huhu发布了新的文献求助10
26秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
38秒前
38秒前
Ari_Kun完成签到 ,获得积分10
38秒前
白白白发布了新的文献求助10
44秒前
井中月完成签到,获得积分10
46秒前
果冻橙完成签到,获得积分10
47秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867814
求助须知:如何正确求助?哪些是违规求助? 3410040
关于积分的说明 10666404
捐赠科研通 3134298
什么是DOI,文献DOI怎么找? 1728967
邀请新用户注册赠送积分活动 833108
科研通“疑难数据库(出版商)”最低求助积分说明 780610