Abstract 2454: Spatial profiling of arsenic-responsive gene expression in bladder cancer models via multiplex in situ hybridization

多路复用 原位杂交 原位 膀胱癌 基因表达 基因表达谱 癌症研究 生物 计算生物学 基因 医学 分子生物学 癌症 生物信息学 遗传学 化学 有机化学
作者
Sonalika Singhal,Kevin Gardner,M. L. Miller,Anshuman Dixit,S.P. Singhal,Donald A. Sens,Sandeep K. Singhal
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 2454-2454
标识
DOI:10.1158/1538-7445.am2025-2454
摘要

Abstract Multiplex Fluorescent In Situ Hybridization (mFISH) enables precise identification of distinct cell phenotypes and facilitates the assessment of spatial interactions within the tumor microenvironment. Analyzing images generated from mFISH studies allows for detailed characterization and comparison of the spatial distribution of tumor cells and tumor-associated immune cells. In our prior study, we developed a gene expression-based model for predicting bladder cancer risk under arsenic exposure, identifying three key genes - NKIRAS2, AKTIP, and HLA-DQA1 that demonstrated high predictive accuracy (AUC: 94 for training and 75 for testing) (PMCID: PMC8760535). The current study employs an image-based digital Pathology approach to further validate this model, exploring the role of these potential biomarkers at single-cell resolution.Bladder cancer biopsy samples contain RNA of sufficient integrity and quality for molecular analysis (RNA Integrity Number > 7), and confirmed through positive and negative control assessments, were selected for accurate and reliable gene expression analysis in downstream. Five mFISH images were generated by ACD Bio-Techne, and hematoxylin and eosin (H&E) images were annotated by the Department of Pathology and Cell Biology at Columbia University Medical Center. Using Warpy, the mF and H&E images were overlaid to delineate tumor and non-tumor regions on whole slide images (WSI). Quantification of the WSI was conducted with QuPath, where a custom data column containing the weighted 3-gene module score for each cell was appended to the sample data. Spatial distribution of cells was analyzed in python using Sklearn, padas, numpy and matplotlib libraries.The analysis demonstrated that the previously established three-gene risk prediction model exhibited a significantly higher signal density within tumor regions across all mFISH bladder cancer samples. Tumor regions displayed a markedly closer spatial proximity between cells compared to non-tumor regions. When comparing the genomic risk prediction equation for individual cells in tumor versus non-tumor regions, the model achieved a training AUC score of 0.92 and a test accuracy of 0.85. Notably, this trend was independent of tumor grade, whereas expression intensity declined with increasing patient age.In conclusion, this study reinforces the predictive significance of the previously identified gene set comprising NKIRAS2, AKTIP, and HLA-DQA1 in assessing bladder cancer risk. The methodologies utilized highlight the potential of low-complexity, single-cell gene expression profiling through multiplex mFISH, coupled with the integration of AI-driven digital pathology tools. However, the study is limited by its small sample size and the narrow range of clinical parameters evaluated, underscoring the need for further research to validate and expand these findings. Citation Format: Sonalika Singhal, Kevin Gardner, Michael L. Miller, Anushka Dixit, Samarth Singhal, Donald Sens, Sandeep Singhal. Spatial profiling of arsenic-responsive gene expression in bladder cancer models via multiplex in situ hybridization [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 2454.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七星嘿咻完成签到,获得积分10
1秒前
lijiankeyantong完成签到,获得积分20
1秒前
2秒前
啵啵完成签到,获得积分10
2秒前
2秒前
麻辣香锅完成签到,获得积分10
3秒前
极恶非道完成签到,获得积分10
3秒前
打打应助benben01采纳,获得10
3秒前
叛逆黑洞发布了新的文献求助10
3秒前
俊逸的冬云完成签到,获得积分10
3秒前
今天看文献了吗给今天看文献了吗的求助进行了留言
3秒前
4秒前
自由汝燕发布了新的文献求助10
4秒前
JamesPei应助gaoyunfeng采纳,获得10
4秒前
橙汁完成签到 ,获得积分10
4秒前
寇博翔发布了新的文献求助10
5秒前
axuan发布了新的文献求助10
5秒前
苑孟辉完成签到 ,获得积分10
6秒前
SimmonsLI完成签到,获得积分10
6秒前
7秒前
zz完成签到,获得积分10
7秒前
okl完成签到,获得积分10
8秒前
郭郭郭完成签到,获得积分10
8秒前
科研通AI2S应助junjieLIU采纳,获得10
9秒前
凡仔发布了新的文献求助10
9秒前
科研r完成签到,获得积分10
9秒前
优雅苑睐完成签到,获得积分10
10秒前
木通完成签到,获得积分10
10秒前
10秒前
moonlin发布了新的文献求助10
11秒前
11秒前
tang_c发布了新的文献求助10
11秒前
11秒前
11秒前
CK完成签到,获得积分10
12秒前
SUEPSnc发布了新的文献求助10
12秒前
12秒前
13秒前
MAX完成签到,获得积分10
13秒前
斯文败类应助贾婷婷采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4363001
求助须知:如何正确求助?哪些是违规求助? 3863380
关于积分的说明 12048493
捐赠科研通 3506115
什么是DOI,文献DOI怎么找? 1923769
邀请新用户注册赠送积分活动 966050
科研通“疑难数据库(出版商)”最低求助积分说明 865475