Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 哲学 认识论 古生物学 生物
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助天真的皓轩采纳,获得10
1秒前
1秒前
1秒前
含蓄嫣然完成签到,获得积分10
1秒前
besatified发布了新的文献求助10
1秒前
1秒前
顾矜应助查文献的大猫采纳,获得10
2秒前
直率的璎完成签到,获得积分10
3秒前
wzswzs发布了新的文献求助10
3秒前
自觉沛文完成签到,获得积分10
4秒前
开心最重要完成签到,获得积分10
4秒前
zhang005on发布了新的文献求助10
5秒前
美丽的凌蝶完成签到,获得积分10
5秒前
6秒前
6秒前
李怀玉完成签到,获得积分10
6秒前
瘦瘦小萱完成签到 ,获得积分10
6秒前
安的沛白完成签到,获得积分10
7秒前
FX发布了新的文献求助10
7秒前
三里墩头应助778采纳,获得10
7秒前
yy完成签到,获得积分10
7秒前
7秒前
虚拟的以南完成签到,获得积分10
8秒前
8秒前
皮皮蛙完成签到,获得积分10
8秒前
彭于晏应助玛璃鸶采纳,获得10
9秒前
黄函发布了新的文献求助10
9秒前
Ava应助cccttt采纳,获得10
9秒前
coconut完成签到,获得积分10
10秒前
wendinfgmei发布了新的文献求助10
10秒前
香蕉觅云应助剪影改采纳,获得10
11秒前
记忆里的阳光完成签到,获得积分10
11秒前
dachengzi完成签到,获得积分10
11秒前
Orange应助酒酿萝卜皮采纳,获得10
11秒前
_是小满完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
慕青应助不知道叫啥采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881